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h i g h l i g h t s

• We apply supersymmetric quantum mechanics to the inverted oscillator potential.
• The complex second-order transformations allow us to build new non-singular potentials.
• The algebraic structure of the initial and final potentials is analyzed.
• The initial potential is described by a complex-deformed Heisenberg–Weyl algebra.
• The final potentials are described by polynomial Heisenberg algebras.
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a b s t r a c t

In this article we will apply the first- and second-order supersym-
metric quantum mechanics to obtain new exactly-solvable real
potentials departing from the inverted oscillator potential. This
system has some special properties; in particular, only very spe-
cific second-order transformations produce non-singular real po-
tentials. It will be shown that these transformations turn out to
be the so-called complex ones. Moreover, we will study the factor-
ization method applied to the inverted oscillator and the algebraic
structure of the new Hamiltonians.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the following Hamiltonian:

H = −
h̄2

2m
d2

dx2
+

1
2
mω2x2, (1)
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wherem has units of mass and ω of frequency. In order to simplify, we are going to use natural units,
such that h̄ = m = 1, to obtain

H = −
1
2

d2

dx2
+

1
2
ω2x2. (2)

Moreover, by choosing appropriately the value ofω, three essentially different cases can be obtained:

ω =

1 harmonic oscillator,
0 free particle,
i inverted oscillator.

(3)

These are three rare examples of exactly-solvable potentials in quantum mechanics. The first one,
the harmonic oscillator, is a very well known system from which the technique of creation and
annihilation operators and the whole formalism of the factorization method come from. The second,
the free particle, has also been largely studied. This simple system allows us towork close to the limits
of quantum theory, for example, with non-square-integrable wavefunctions with plenty of physical
applications such as the plane waves. The third case is not so familiar: it is called either inverted
oscillator, repulsive oscillator, inverse oscillator, or parabolic potential barrier. Although it started as an
exercise from Landau’s book [1], its physical applications have grown since the appearance of Barton’s
Ph.D. Thesis (published in [2]), v.g., as an instability model, as a mapping of the 2D string theory [3],
or as a toy model to study early time evolution in inflationary models [4].

It is interesting to observe that both oscillator potentials, harmonic and inverted, are simultane-
ously produced inside an ideal Penning trap, typically used to confine charged particles [5,6]. In its
standard setup, a quadrupolar electrostatic field creates a harmonic oscillator potential along the sym-
metry axis of the trap, inducing confinement along this direction. In addition, in the orthogonal plane
a two-dimensional inverted oscillator arises, driving the particles towards the trap walls. In order to
compensate for the last effect, a static homogeneous magnetic field along the symmetry axis of the
trap is also applied, but for zeromagnetic field the two kinds of oscillator potentials are created inside
the cavity.

Mathematically, the harmonic and inverted oscillators are very much alike, and we will show that
the solutions of one can be obtained almost directly from the other one; nevertheless, we should
remark that physically these two systems are very different. For example the harmonic oscillator
has a discrete non-degenerate equidistant energy spectrum with square-integrable eigenfunctions,
while the inverted oscillator has a continuous spectrum varying from −∞ to +∞, which is double
degenerate, and whose eigenfunctions are not square-integrable.

On the other hand, a standard technique for generating new exactly-solvable potentials departing
from a given initial one is the supersymmetric quantum mechanics (SUSY QM) (for recent reviews
see [7–12]). Its simplest version, whichmakes use of differential intertwining operators of first-order,
has been employed for generatingHamiltonianswhose spectra differ from the initial one in the ground
state energy level. In addition, the higher-order variants, which involve differential intertwining
operators of orders larger than one [13–17], allow as well the modification of one or several excited
state levels.

The SUSY techniques of first- and higher-order have been successfully applied to the harmonic
oscillator [18,19] and the free particle [20,21] for generating plenty of exactly-solvable potentials.
However, as far as we know, neither the first- nor the higher-order SUSY QM have been employed
taking as a point of departure the inverted oscillator. In this paper we aim to fill the gap by applying
the supersymmetric transformations to the inverted oscillator. In order to do that, in Section 2 we
will get the general solution of the stationary Schrödinger equation (SSE) for the Hamiltonian (2)
with an arbitrary energy E, which will remain valid even for E ∈ C. In addition, the solutions which
have a physical interpretation for the inverted oscillator will be identified. In Section 3 we are going
to explore the factorization method for both systems, obtaining the bound states for the harmonic
oscillator and also several sets of mathematical polynomial solutions, a class of solutions which have
been of interest along the time (see e.g. [22–24]). In Section 4 we will work out the first-order SUSY
QM for the inverted oscillator, while in Section 5wewill apply the second-order one in three different
situations: real, confluent and complex cases. The last onewill be themost important case of the paper,
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