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a b s t r a c t

In this paper, we use the Kaluza–Klein approach to describe topo-
logical defects in a graphene layer. Using this approach, we pro-
pose a geometric model allowing us to discuss the quantum flux
in K -spin subspace. Within this model, the graphene layer with
a topological defect is described using a four-dimensional metric,
where the deformation produced by the topological defect is in-
troduced via the three-dimensional part of a metric tensor, while
an Abelian gauge field is introduced via an extra dimension. We
use this new geometric model to discuss the arising of topological
quantum phases in a graphene layer with a topological defect.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The concept of extra dimensions, which is treated now as one of themost popular concepts in high
energy physics, has a long history. Initially [1,2], the hypothesis of extra dimensions was introduced
as an attempt to unify gravity and electromagnetism. Despite this attempt not succeeding and having
been abandoned, the idea of introducing additional spacetime dimensions as a possible instrument
allowing one to construct unified physical theories has found wide applications in quantum field
theory, especially due to the development of string theory, which is well-known to be consistent in a
space with extra dimensions [3].

The essence of the Kaluza–Klein approach in its modern form is as follows. Let us suggest that
spacetime involves, besides the usual dimensions, compact extra dimensions. As a consequence, all
fields defined in this space can be expanded in Fourier series with respect to the extra coordinates.
Different Fourier modes arising throughout this expansion possess different masses depending on
the sizes of the compact extra dimensions; thus, in principle, an infinite tower of new particles with
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an infinite spectrum of masses can arise. Besides the string applications, the Kaluza–Klein approach
turned out to provide an efficient description of black holes (for a review on Kaluza–Klein theory,
see [4]).

Graphene, whose different aspects have been studied earlier in a number of papers [5–9], is
a physical system whose description essentially involves topological defects. Different aspects of
graphene have been studied with the use of the gauge fields approach [7–9], finite temperature
methods [10], Berry phases arising from the presence of dislocations in the graphene layer [11], and
the parallel transport of Dirac fermions in the presence of torsion and curvature [12]. Recently, several
investigations have established the physical similarity between gravity and some models used in
condensed matter theory [13–15]. It is well-known that smooth deformations of graphene sheets
produce a gauge field similar to the electromagnetic one [16,17], and topological defects in graphene
can be interpreted as a source of a non-Abelian gauge field [18–21]. On the basis of this bridge
between the physics of graphene and properties of the gauge and gravitational fields, in this work
we use the Kaluza–Klein theory to describe a graphene layer with a topological defect. The success of
applying the quantum field theory concepts in condensed matter theory leads us to hope that using
the Kaluza–Klein theory for describing certain condensed matter models could be very efficient. In
particular, one very promising idea consists in applying theKaluza–Klein approach to graphene,where
the extra dimension concept naturally emerges in the case of the presence of a topological defect.

In this paper, we extend the two-dimensional metric which describes a topological defect in a
graphene layer to a three-dimensional metric by adding an extra compact dimension to describe the
Fermi-point degree of freedom, and demonstrate that we can calculate the geometric phase acquired
by the wavefunction of a massless fermion which arises from the mixing of the Fermi points, and the
parallel transport of a spinor around the apex of a defect in a graphene layer.

‘‘Geometric quantum phases’’ is a term introduced by Berry [22] to describe the phase shifts
acquired by the wavefunction of a quantum particle in adiabatic evolution. A well-known quantum
phase that belongs to this more general class of phases is the Aharonov–Bohm effect [23]. Within
this effect, the wavefunction of the electron acquires a topological quantum phase circulating in a
solenoid. The electron moves in a region where the magnetic field is zero, and still feels the influence
of the magnetic field via the vector potential in the phase acquired by the wavefunction describing
the motion of the electron. Aharonov and Anandan [24] extended the study of geometric quantum
phases to any cyclic evolution, and the phase shift associated with any cyclic evolution is known as
the Aharonov–Anandan quantum phase. The study of geometric phases in a quantum system has
attracted a great deal of attention in recent years [25,26]; the most important quantum effect is
the Aharonov–Bohm effect [23]. In graphene, the geometric phase arising from the presence of a
disclination in a graphene layer has been pointed out in [20,21]. In this paper, we extend the two-
dimensional metric which describes a topological defect in a graphene layer to a three-dimensional
metric by adding an extra compact dimension to describe the Fermi-point degree of freedom, and
demonstrate that we can calculate the geometric phase acquired by the wavefunction of a massless
fermionwhich arises from themixing of the Fermi points and the parallel transport of a spinor around
the apex of a defect in a graphene layer.

This paper is organized as follows. In Section 2, we a give a brief review of graphene, and the
appearance of quantum fluxes due to the presence of a topological defect. In Section 3, we introduce
the concept of an extra dimension from the Kaluza–Klein theory [1,2] for graphene, and discuss how
to obtain the quantum flux from the K -spin part of graphene from a geometrical point of view. Finally,
in Section 4, we present our conclusions.

2. Graphene: a brief review

In this section, we give a brief review of graphene and the arising of quantum phases caused by the
presence of a topological defect called a disclination [13–15,27,28]. The conduction band of graphene,
which consists of a graphite layer, can be described by using the tight-binding model [18–21]. A
graphene layer is a two-dimensional material formed by an isolated layer of carbon atoms arranged in
a honeycomb lattice. We describe this structure by means of two sublattices A and B, where the unit
cell and the vector of the unit cell are represented in Fig. 1.
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