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a b s t r a c t

We address the problem of a quantum particle moving under
interactions presenting singularities. The self-adjoint extension
approach is used to guarantee that the Hamiltonian is self-adjoint
and to fix the choice of boundary conditions. We specifically look at
the harmonic oscillator added of either a d-function potential or a
Coulomb potential (which is singular at the origin). The results are
applied to Landau levels in the presence of a topological defect, the
Calogero model and to the quantum motion on the noncommuta-
tive plane.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The harmonic oscillator models a very large number of physical systems. It appears as the interac-
tion between atoms in the elastic crystal, as the effective potential acting on electrons moving in a uni-
form magnetic field (Landau levels), in the quantization of fields, etc. Localized interactions are less
ubiquitous but nonetheless important. They appear as singularities, like a d-function, for instance,
which can be very handy when modelling very short-ranged interactions [1]. These are the so-called
contact interactions, which appear in such diversified physical systems as nanoscale quantum devices
[2] and in the optics of thin dielectric layers [3], for example. In quantum mechanics, singularities and
pathological potentials, in general, are often dealt with by some kind of regularization. A common
approach to ensure that the wave function in the presence of a singularity is square-integrable (and
therefore might be associated to a bound state) is to force it to vanish on the singularity. More appro-
priately, an analysis based on the self-adjoint extension method [4], broadens the boundary condition
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possibilities that still give bound states. The physics of the problem determines which of these
possibilities is the right one, leaving no ambiguities, like done in Refs. [5,6] for a cosmic string.

In a recent article [7], two of us used self-adjoint extension to study the quantum dynamics of a free
particle on a conical surface as a toy model. This was motivated by a previous work [8] where we stud-
ied a gravitational analogue of the bound-state Aharonov–Bohm effect. Instead of a magnetic flux we
considered a curvature flux provided by a cosmic string. This object, geometrically, corresponds to a
Minkowiski space–time with a conical singularity, that is, a line element given by

ds2 ¼ c2dt2 � dz2 � dq2 � a2q2dh2; ð1Þ

where a is related to the linear mass density of the string. For this choice of coordinates the conical
singularity lies on the z-axis. Notice that the ordinary cone has its geometry described by the t = const.,
z = const. section of the cosmic string space–time. In [8] we solved the Schrödinger equation for a free
particle in the background given by (1) and found a bound state without the need of confinement, a
requirement for the usual bound-state Aharonov–Bohm effect to appear [9]. In [7] we studied the case
of a particle moving on a cone under the influence of a pathological potential which goes with 1/q2.
The curvature singularity of the cone enters the Schrödinger equation as the geometric potential [10]

Ugeo ¼ �
�h2

2M
ðH2 � KÞ; ð2Þ

where H and K are, respectively, the mean and the Gaussian curvature of the surface. This is necessary
due to the embedding of the surface in three-dimensional space [10]. It is the Gaussian curvature the
one that contributes with the d-function [7]:

K ¼ 1� a
a

� �
dðqÞ
q

: ð3Þ

The mean curvature leads to the pathological potential since [7]

H2 ¼ 1� a2

4a2q2 : ð4Þ

In this work we address the problem of a harmonic oscillator on a plane with a single d-function
singularity located at the origin of a polar coordinate system. Besides the obvious connection with ref-
erences [8,7], this problem is related to applications like the study of Landau levels in a medium with a
topological defect, the Calogero model, and the dynamics of a charged particle on the noncommutative
plane in the presence of a flux tube, all of which we discuss here. It is important to notice that the
influence of topology on Landau levels has been addressed over the years in the context of spaces with
topological defects [11,12]. The difference between this work and the previous ones is that we are
including the coupling between the singularity and the eigenfunctions, that is, we are including a cou-
pling between the eigenfunctions and a short-ranged potential (modeled by a d-function interaction).
We deal with this problem via the self-adjoint extension approach [4].

2. Two-dimensional harmonic oscillator in the presence of a d-function singularity

The Hamiltonian of the harmonic oscillator in two-dimensional space is given by

Ho ¼
p2
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4
; ð5Þ

where the factor 1
4 is written for convenience. In polar coordinates (r,u) it can be written as
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