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a b s t r a c t

Dissipative quantum trajectories in complex space are investi-
gated in the framework of the logarithmic nonlinear Schrödinger
equation. The logarithmic nonlinear Schrödinger equation pro-
vides a phenomenological description for dissipative quantum sys-
tems. Substituting the wave function expressed in terms of the
complex action into the complex-extended logarithmic nonlinear
Schrödinger equation, we derive the complex quantum Hamilton–
Jacobi equation including the dissipative potential. It is shown
that dissipative quantum trajectories satisfy a quantumNewtonian
equation ofmotion in complex spacewith a friction force. Exact dis-
sipative complex quantum trajectories are analyzed for the wave
and solitonlike solutions to the logarithmic nonlinear Schrödinger
equation for the damped harmonic oscillator. These trajectories
converge to the equilibrium position as time evolves. It is indicated
that dissipative complex quantum trajectories for the wave and
solitonlike solutions are identical to dissipative complex classical
trajectories for the damped harmonic oscillator. This study devel-
ops a theoretical framework for dissipative quantum trajectories in
complex space.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Various trajectory methods, based on classical, semiclassical, or quantum mechanics, have been
developed to study dynamical problems in physics and chemistry [1–4]. For example, in the frame-
work of Bohmian mechanics [5,6], the quantum trajectory method (QTM) provides nontraditional
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computational techniques for solving the time-dependent Schrödinger equation (TDSE) [7–9]. In con-
trast with the QTM in real space, the complex QTM, based on the quantum Hamilton–Jacobi formal-
ism [10,11], has been developed to provide not only insightful interpretation but also computational
utility for quantum dynamical processes. This method has been used to analyze stationary state prob-
lems [12–18], quantum interference [19–22], and coherent states [17,23]. The complex probability
density and flux continuity have been discussed in detail [24–29]. As a computational tool, the com-
plex QTM involving propagation of approximate independent quantum trajectories in complex space
has been applied towave packet scattering problems [30–34], dissipative dynamics [35], nonadiabatic
dynamics [36,37], and the semiclassical coherent state propagator [38]. The path-integral derivation
has been presented for the complex QTM and the complexWKBmethod [39]. In addition, the dynam-
ics of tunneling through barriers has been studied using complex time paths [40,41]. Furthermore, we
have proposed a computational method to integrate the complex quantumHamilton–Jacobi equation
(CQHJE) by propagating an ensemble of correlated Bohmian trajectories in real space [42–44].

Several studies have involved propagation of quantum trajectories with friction. In order to
improve the accuracy and stability of theQTM, artificial viscosity termswere added to the equations of
motion to soften the quantum force and to prevent nodes from fully forming [45–51]. The ground state
of quantum systems can be realized from an initial nonstationary state by adding a friction term to the
Newtonian-type equation of motion of the QTM [52–55]. The friction method has been proposed to
stabilize the numerical implementation of the quantum trajectory formulation [56,57]. In particular,
the dissipative dynamics associatedwith the Caldirola–Kanai time-dependent Hamiltonianmodel has
been analyzed in the framework of Bohmian mechanics [58]. However, these studies are associated
with the quantum trajectory evolution with friction in real space.

The purposes of the current study are to develop the theoretical formulation of dissipative quan-
tum trajectories in complex space and to analyze these trajectories for the damped quantum har-
monic oscillator. For comparison, wewill begin with briefly reviewing Kostin’s Schrödinger–Langevin
equation providing a phenomenological description for dissipative quantum systems [59,60]. The
Schrödinger–Langevin equation has been discussed and analyzed for several quantum systems,
such as the damped harmonic oscillator and the motion of a charged particle in the pres-
ence of damping [3,61–63]. Several methods have been developed to obtain solutions to the
nonlinear Schrödinger–Langevin equation using quantum fluid dynamics [64–67]. The nonlinear
Schrödinger–Langevin equation has been generalized for quantum processes in the presence of non-
linear friction and a heat bath [68], and a non-Markovian nonlinear Schrödinger–Langevin equation
has been derived from the system-plus-bath approach [69]. In addition, the ground states of sev-
eral one-dimensional quantum systems have been obtained through the fixed-grid integration of the
Schrödinger–Langevin equation [70]. Furthermore, a nonlinear logarithmic Schrödinger equation un-
der continuous measurement has been proposed [71], and the establishment of a dividing line be-
tween the classical and quantum regimes is one of themain aspects of themeasurement process [72].
Recently, the Schrödinger–Langevin equation has been studiedwith thermal fluctuations by including
the stochastic force term [73].

As in Bohmian mechanics, substituting the polar form of the wave function into the
Schrödinger–Langevin equation, we obtain the continuity equation for the probability density and
the modified quantum Hamilton–Jacobi equation (QHJE) with the dissipative potential depending on
the real action function. These dissipative Bohmian trajectories obey a quantum Newtonian equation
of motion including a friction force. As time evolves, Bohmian particles continue to lose the kinetic
energy, and then these particles become stationary when equilibrium is reached. Based on the hy-
drodynamic formulation, the Schrödinger–Langevin equation provides an insightful interpretation for
dissipative Bohmian trajectories in real space. Recently, we have integrated the Schrödinger–Langevin
equation for the ground state of quantum systems by evolving an ensemble of correlated Bohmian tra-
jectories [74]. In addition, the Schrödinger–Langevin equation has been approximately solved for the
ground state energy of quantum systems by propagating one single trajectory at a fixed point [75].

However, the Schrödinger–Langevin equation has several unexpected features [62,76–78]. For
example, the solutions for a damped harmonic oscillator contain the undamped frequency instead of
the reduced frequency. In addition, the probability density satisfies the reversible continuity equation
for a system displaying damping which follows an irreversible dynamics. In order to avoid the
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