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a b s t r a c t

We show that double-exchange mechanism is responsible for
ferromagnetism in low dimensional rare-earth compounds. We
use the bosonized version of the one-dimensional Anderson lat-
tice model in Toulouse limit to characterize the properties of the
emerging ferromagnetic phase. We give a comprehensive descrip-
tion of the ferromagnetic ordering of the correlated electrons
which appears at intermediate couplings and doping. The obtained
ferromagnetic phase transitions have been identified to be an or-
der–disorder transition of the quantum random transverse-field
Ising type.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the competition between the Kondo effect and magnetism plays a very
important role in anomalous rare-earth and also actinide compounds [1]. In fact, the 4f -electrons are
well localized andmany rare-earth compounds are either Kondo ormixed-valence ones. Indeed,many
valence transitions are accompanied by substantial changes in the magnetic behaviour of the system.
This is due to the fact that the localized f orbitals responsible for the mixed-valence behaviour are
also responsible for the intrinsic magnetic moment of the ion. When the occupation of these orbitals
changes, modification of the compound’s magnetic properties is expected. Specifically, the valence
anomalies may occur due to the superposition of different magnetic states of the mixed-valence
ions. Furthermore, many of the elements (mostly Ce and Yb) that form mixed-valence compounds
(e.g. CeSn3, CePd3, YbInAu) also form other compounds (e.g. CeAl2, CeSb, YbCuAl) which are not in
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a mixed-valence state but instead display well-defined magnetic behaviour consistent with integer-
valence states. A convincing model of rare earth compounds should be able to interpolate between
these limits.

Although it is clearly a very important feature of the physics of rare-earth compounds, the large
orbital degeneracy of the 4f states makes a theoretical description challenging. Years of theoretical
investigation of actinide impurities have demonstrated that there exists general features of such
systems that can be studied using generic models; more sophisticated treatments only become
necessary when attempting to make contact with actual physical systems. One of the most popular of
the ‘‘generic models’’ is the Anderson impurity model, which neglects all but the most gross features
of the impurity orbital structure [2].

Because of its success in explaining the physics of the isolated rare-earth ion, the Anderson
impurity model has been extended to the lattice limit by Varma and Yafet [3]. The so-called Anderson
lattice model is defined

H = −t
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The first term on the right-hand side (RHS) of Eq. (1) describes a non-interacting tight-binding
conduction electron band with t > 0. The next two terms describe the atomic structure of the ions:
it is assumed a simplified two-level structure with the f 1-level at ϵf and the f 2-level at ϵf + U . The
on-site Coulomb repulsion U can be large (i.e. U ≫ t) due to the small radius of the 4f orbitals. The
last line of Eq. (1) is the hybridization potential V between the f orbitals and the conduction electrons.
The concentration n of electrons is constant, fixed at n = (1/N)


jσ (nf

jσ + nc
jσ ), 0 ≤ n ≤ 2.

Since its introduction, the theoretical interest in the Anderson lattice has been very intense.
The different theoretical and numerical approaches to the model are too numerous to summarize
here [1]. Instead, we direct our attention to describing the two most important regimes of behaviour
demonstrated by the Anderson lattice: the Kondo and the mixed valence regimes.

As is well known, in the limit when ϵf ≪ eF , ϵf + U ≫ eF and |ϵf − eF |, |ϵf + U − eF | ≫ Γ

(the effective width of the f -levels due to hybridization), the single-impurity Anderson model can
be perturbatively mapped onto the Kondo impurity [4,5]. As the f 1-level lies far below the Fermi
energy and the f 2-level lies far above, the ion is always singly-occupied, thus maintaining a spin-
1
2 moment. Charge fluctuations on the f 1 state due to the hybridization may be treated as virtual
processes, which lead in second-order perturbation theory to antiferromagnetic effective exchange
interactions between the conduction electrons and the localized moment. In analogy to the charge
screening cloud, the conduction electrons form a spin screening cloud around this local moment,
leading to anomalous behaviour of the susceptibility.

A similar analysis can of course be carried out for the Anderson lattice, with a local moment regime
being realized for the same parameter values as in the impurity model: the f 1 level lies far below the
Fermi energy (located in the conduction band) while the f 2 level lies far above. As such, the f orbitals
are singly occupied and maintain a magnetic moment. The effective Hamiltonian in this regime is the
weak-coupling Kondo latticemodel (KLM), where the f orbitals at each site are replaced by a localized
spin- 12 that interacts via antiferromagnetic exchangewith the conduction electrons. The KLMhas been
extensively studied as amodel of heavy fermionmaterials [1]. Magnetically-ordered phases have also
been observed within the KLM: this indicates that similarly non-trivial ordering behaviour can be
found in the Anderson lattice. The knowledge of the KLM’s behaviour is particularly advanced in 1D,
with both theoretical and numerical studies forming a complete picture of the phase diagram [4,6].
The 1D KLM will be discussed in more detail in Section 1.

The other easily-identifiable regime of the Anderson lattice is the mixed-valence regime: here the
f 1-level lies close to the Fermi energy, acquiring a finite width due to the hybridization with the
conduction electron band. The f 2-level lies far above the Fermi energy and so it may be regarded
as (permanently) unoccupied. We hence see that a mixed-valence state involving the f 1 and f 0 con-
figurations is realized. Themixed-valence regime of the Anderson lattice is very poorly understood. In
contrast to the Kondo regime, there exists no simple effective model onto which the mixed-valence
can be mapped. For n = 2 (i.e. half-filling) and U = 0, Eq. (1) describes an insulator with band gap
of width ∼ Γ . In the case where U ≪ Γ , a perturbation series in U converges for the ground state at
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