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a b s t r a c t

A new system of general Navier–Stokes-like equations is proposed
to model electromagnetic flow utilizing analogues of hydrody-
namic conservation equations. Such equations are intended to pro-
vide a different perspective and, potentially, a better understanding
of electromagneticmass, energy andmomentum behaviour. Under
such a new framework additional insights into electromagnetism
could be gained. To that end, we propose a system of momentum
and mass-energy conservation equations coupled through both
momentum density and velocity vectors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. System of Navier–Stokes equations

Several groups have applied the Navier–Stokes (NS) equations to electromagnetic (EM) fields
through analogies of EM field flows to hydrodynamic fluid flow. Most recently, Boriskina and Rein-
hard made a hydrodynamic analogy utilizing Euler’s approximation to the Navier–Stokes equations
in order to describe their concept of Vortex Nanogear Transmissions (VNT), which arise from com-
plex electromagnetic interactions in plasmonic nanostructures [1]. In 1998, H. Marmanis published
a paper that described hydrodynamic turbulence and made direct analogies between components of
the NS equations and Maxwell’s equations of electromagnetism[2]. Kambe formulated equations of
compressible fluids using analogous Maxwell’s relation and the Euler approximation to the NS equa-
tions [3]. Lastly, in a recently published paper John B. Pendry, et al. developed a general hydrodynamic
model approach to plasmonics [4].
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In the cases of Kambe and Boriskina, et al., the groups built their models through analogous Euler-
like equations along with relevant mass continuity analogues, respectively shown below.

Dv
Dt

= −
∇p
ρ

, (1)

Dρ

Dt
+ ρ∇ · v = 0 (2)

where v is the velocity vector, ∇ =
∂

∂xi
êi is the del operator, p is pressure, ρ is fluid density, and

D/Dt = ∂/∂t + v · ∇ is a material derivative operator. Marmanis and others [5,6] utilized the
Navier–Stokes momentum equation (3) to build their EM analogues:

ρ


∂v
∂t

+ (v · ∇)v


= −∇p + µ∇
2v + f. (3)

The terms on the left side of the equation represent the fluid’s inertia per volume. The ∂v
∂t term rep-

resent an unsteady state acceleration, while v · ∇v is a non-linear advection term. On the right hand
side, the sum of the pressure gradient, ∇p, and the viscosity, µ∇

2v, represent the divergence of a
stress tensor. Finally, f represents the sum of all other body forces acting on the system. Eq. (3) is
the momentum equation that describes fluid flow, while Eq. (1) is its approximation under zero body
forces and inviscid flow, neglecting heat conduction, also termed the Euler approximation.

As others have done, we, likewise, begin with an analogy of hydrodynamic conservation equations
mapped to corresponding electromagnetic conservation equations, assuming non-relativistic flow
in an isotropic medium, to finally derive a new system of Navier–Stokes-like equations that model
electromagnetic flow. This new set of equations could potentially be useful in gaining a different
perspective and better understanding of electromagnetic mass, energy, momentum behaviour.

1.2. General momentum, mass, energy conservation hydrodynamic equations

Eq. (3) is not in its most general form to describe fluid momentum. A more general equation is the
Cauchy Momentum equation into which one substitutes in an appropriate stress tensor and consti-
tutive relations relative to the problem at hand. Such substitution then leads to the NS momentum
equation. Making use of the material derivative operator, the Cauchy Momentum Equation is:

ρ
Dv
Dt

= ∇ · σ + f (4)

where ∇ · σ is the divergence of a stress tensor, which can be further broken down into the sum of
a pressure tensor, −∇p, and a deviatoric tensor, ∇ · τ. So that, ∇ · σ = −∇p + ∇ · τ. Here we have
opted to represent tensors as boldface lower-case Greek letters.1

Given the above, the question then becomes:What is necessary to generally define a hydrodynamic
model obeying Navier–Stokes-type equations. The answer comes in the form of conservation of
momentum, mass and energy. In terms of the material derivative operator these three are:

Momentum: ρ
Dv
Dt

− ∇ · σ − f = 0 (5)

Mass:
Dρ

Dt
+ ρ∇ · v = 0 (6)

Energy:
DS
Dt

−
Q
T

= 0 (7)

1 In component form, the stress tensor can be represented as σij = τij + πδij , where τij is the stress deviator tensor that
distorts a volume component, while πδij is the volumetric stress tensor that tends to change the volume of a stressed body due
to pressure exertion. Thus, to derive the Navier–Stokes momentum equation from the Cauchy momentum equation a stress
tensor of the form: σij = −pδij + 2µϵij is used, with µϵij representing the viscosity component and p the pressure.
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