
Annals of Physics 350 (2014) 211–224

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Recovering entanglement by local operations
A. D’Arrigo a,b,c,∗, R. Lo Franco d,c, G. Benenti e,f,
E. Paladino b,a,c,g, G. Falci b,a,c,g
a CNR-IMM UOS Università (MATIS), Consiglio Nazionale delle Ricerche, Via Santa Sofia 64,
95123 Catania, Italy
b Dipartimento di Fisica e Astronomia, Università degli Studi Catania, Via Santa Sofia 64,
95123 Catania, Italy
c Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Via Santa Sofia 64,
95123 Catania, Italy
d Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo, Italy
e CNISM and Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria, Via Valleggio
11, 22100 Como, Italy
f Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
g Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Viale S. Sofia 64, 95123 Catania, Italy

a r t i c l e i n f o

Article history:
Received 1 February 2014
Accepted 18 July 2014
Available online 23 July 2014

Keywords:
Quantum information
Entanglement
Decoherence
Open quantum systems

a b s t r a c t

We investigate the phenomenon of bipartite entanglement revivals
under purely local operations in systems subject to local and inde-
pendent classical noise sources. We explain this apparent paradox
in the physical ensemble description of the system state by intro-
ducing the concept of ‘‘hidden’’ entanglement, which indicates the
amount of entanglement that cannot be exploited due to the lack of
classical information on the system. For this reason this part of en-
tanglement can be recoveredwithout the action of non-local opera-
tions or back-transfer process. For two noninteracting qubits under
a low-frequency stochastic noise, we show that entanglement can
be recovered by local pulses only. We also discuss how hidden en-
tanglementmay provide new insights about entanglement revivals
in non-Markovian dynamics.
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1. Introduction

Entanglement, arguably the most peculiar feature of quantum mechanics, plays a key role in sev-
eral quantum information and communication applications, including teleportation, quantum dense
coding, private key distribution, and reduction of communication complexity [1–4]. Towork properly,
all the above tasks generally require pure maximally entangled states. Since entanglement cannot be
generated by Local Operations and Classical Communication (LOCC), entangled states must be gen-
erated somewhere, and then they have to be distributed among different parties, possibly far away
from each other (transmission) [3,4]. Once entanglement has been distributed, it can be used imme-
diately or stored for later use (storage). Systems physically supporting entangled states, unavoidably
interact with the environment, both during transmission and storage, and therefore undergo noisy
processes that deteriorate entanglement. Quantification of entanglement losses is thereby necessary
for all practical purposes.

For a pure state ρ = |ψ⟩⟨ψ |, bipartite entanglement between subsystems A and B is unambigu-
ously defined as the entropy of entanglement E(|ψ⟩⟨ψ |) = S(ρA) = S(ρB), where S(ρi) is the von
Neumann entropy of one of the two reduced states, ρA = TrBρ and ρB = TrAρ. The quantification
of entanglement for mixed states is a much more complicated and still open problem [3,4]. The dif-
ficulty roots in the fact that a mixed state ρ may be decomposed into an ensemble of pure states
ρ =


i pi|ψi⟩⟨ψi|, with pi > 0 and


i pi = 1, in infinite different ways. The arbitrariness of the de-

composition renders any quantification of mixed-state entanglement cumbersome, since it requires
an optimization over all possible decompositions.

In this article, we address the issue of the occurrence of entanglement revivals of a bipartite system,
initially prepared in an entangled state, when the two subsystems are noninteracting and affected
by local independent classical noise sources and local operations (see Fig. 1(a)). In the absence of
non-local operations, entanglement cannot be generated neither back-transferred to the system from
the classical environment. Nevertheless, during the system dynamics, entanglement quantified by
some measure E may start to increase at some time t̄ [5,6] as illustrated in Fig. 1(b). As we will
explain, the increase of entanglementmust be attributed to themanifestation of pre-existing quantum
correlations, that were already present before t̄ . The density operator formalism does not capture the
presence of these quantum correlations, thus they are in some sense hidden. Here we point out that
the existence of these correlations is enlightened if the system is described as a physical ensemble of
states and we introduce the concept of hidden entanglement.

This paper is structured as follows. In Section 2 we introduce a definition of hidden entanglement
(HE) and illustrate the usefulness of this concept by a simple example. In Section 3 we show that HE
between two noninteracting qubits subject to a non-Markovian stochastic process can be recovered
by local pulses (acting only on one qubit). The nature of the observed entanglement revivals and
the relation of this phenomenon with the environment being classical or quantum, are clarified. In
Section 4 we critically discuss some key points related to the definition of HE. In particular, we show
that entanglement recovery does not violate the monotonicity axiom: entanglement cannot increase
under LOCC [3,4,7]. We draw our conclusions in Section 5.

2. Hidden entanglement

Let us consider a bipartite system described by an ensemble of states A = {(pi, |ψi⟩)}. That is, we
know the statistical distribution of the bipartite pure states {|ψi⟩}, occurring with probabilities {pi},
so that ρ =


i pi|ψi⟩⟨ψi|, but the state of any individual system in the ensemble is unknown. The

average entanglement of A is defined as [7–10]:

Eav(A) =


i

piE(|ψi⟩⟨ψi|). (1)

If each system in the ensemble evolves during time t under LOCC, the maximum amount of entangle-
ment of the corresponding density operator ρ(t) can never overcome the initial value Eav(A). This
statement can be proved by the following simple argument. Suppose Charlie prepares a bipartite
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