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h i g h l i g h t s

• Bound states without turning points.
• Lagrangian Formulation for an electric dipole in a magnetic field.
• Motion of the center of mass and trapped states.
• Constants of motion: pseudomomentum and energy.
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a b s t r a c t

We study the classical behavior of an electric dipole in the presence
of a uniform magnetic field. Using the Lagrangian formulation, we
obtain the equations of motion, whose solutions are represented
in terms of Jacobi functions. We also identify two constants of
motion, namely, the energy E and a pseudomomentum C⃗ .We obtain
a relation between the constants that allows us to suggest the
existence of a type of bound states without turning points, which
are called trapped states. These results are consistent with and
complementary to previous results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the present day, many specialists study the world at the molecular scale. Nanotechnology is
slowly exploringmolecular rotors, and applications of this concept are extensive. Using electric fields,
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molecules can change in orientation and/or remain controlled [1–3]. Molecular-level devices can be
obtained from the conversion of energy into controlled motion; nevertheless, it is difficult to repeat
this process using a mechanical molecular motor, although it is common in biological systems. For
the time being, it is expected that the physical principles at the scale of a molecular engine can be
identified by applying rotor dynamics in two dimensions. These rotors aremodeled as electric dipoles
in electric or magnetic fields.

The primary goal of the present work is to describe the motion of a classical electric dipole in the
presence of an external magnetic field, perpendicular to the dipole’s plane of motion. This system
has been approached from various perspective by several authors [4–7]. However, the trajectory of
the center of mass and the conditions for the existence of trapped states in terms of the constants of
motion have not been fully studied. In this article, we describe in detail the solution of the equations
of motion in the coordinates of the relative motion and the center of mass, which we derive from the
Lagrangian formulation of the problem. The relation between the constants of motion, which permits
the existence of trapped states, is established.

As previously discussed, a model of rigid and non-rigid dipoles is considered, constraining the
motion of the center of mass to a direction that is perpendicular to the magnetic field [7]. The motion
of the relative coordinate into the plane is defined by the direction of themagnetic field and a direction
perpendicular to the motion of the center of mass. It is possible to show that for certain values of the
characteristic parameters defined in the problem, there is a functional relation between two constants
of motion that allows the existence of trapped states [4]; this relation has not yet been analytically
established. In other words, an interval of values is found for the constant of motion where solutions
are possible and its trend of these solutions is well defined for certain limiting values. These states are
called classical bound states embedded in a continuum. The quantum analogue is also discussed [7].

In addition, equations and constants of motion are found for the model of an electric dipole
in an external magnetic field, and a preliminary discussion of the existence of trapped states is
introduced [4]. In addition, amodel of two interacting particles is discussed [6], and special trajectories
are found in thismodel for several initial conditions of the velocity, direction, charges and values of the
magnetic field. The distance between particles may vary, but the conditions constrain the motion to a
plane perpendicular to the field and to a fixed distance between particles. Furthermore, the classical
dynamics of two interacting particles becomes an interesting problem where the challenge is to find
solutions that are fully analytical [4–7].

These solutions could significantly impact the future of the applications and construction to
molecular motors, as they describe the overall behavior of a dipole from a classical perspective. This
paper is organized as follows: In Section 2 we present the theoretical basis of the system, deriving the
equations and constants of motions. In Section 3 the solution of the equation of motion is obtained
for the center of mass coordinates. In Section 4 we address the conditions that lead to trapped states,
as mentioned above. Finally, in Section 5, we offer some concluding remarks.

2. Basic definitions and equations of motion

In the present model [4], we consider two charges in the presence of a uniformmagnetic field. The
magnetic field is obtained from a vector potential A⃗, as follows: B⃗ = ∇ × A⃗. We assign to the particle
1(2) the charge e1(e2), the position r⃗1(r⃗2), the velocity ˙⃗r1(˙⃗r2) and the mass m1(m2). The Lagrangian
formulation leads to the following expression:
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where κ is the dielectric constant of the medium in which the motion of charges occurs. We define
the vector potential A⃗ using the symmetric gauge as follows:

A⃗(r⃗i) =
1
2
B⃗ × r⃗i, for i = 1, 2, (2)
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