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ARTICLE INFO ABSTRACT

Keywords: ) The complex scaling method (CSM) is a useful similarity transformation of the Schrédinger
gggﬂgerfcsecsalmg method equation, in which bound-state spectra are not changed but continuum spectra are
Level density separated i.nto resonant and non-resonant continuum ones. Because the asymptotic
Extended completeness relation wave functions of the geparated re;onant §tates are regularlzed. by the CSM,'many—l?ody
Halo nuclei resonances can be obtained by solving an eigenvalue problem with the L? basis functions.
Applying this method to a system consisting of a core and valence nucleons, we investigate
many-body resonant states in weakly bound nuclei very far from the stability lines. Non-
resonant continuum states are also obtained with the discretized eigenvalues on the
rotated branch cuts. Using these complex eigenvalues and eigenstates in CSM, we construct
the extended completeness relations and Green’s functions to calculate strength functions
and breakup cross sections. Various kinds of theoretical calculations and comparisons with

experimental data are presented.
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1. Introduction

In the atomic nucleus, the properties of the unbound states are fundamental to the nuclear structures and reactions.
The recent experimental developments in the field of unstable nuclear physics, starting from the discovery of neutron halo
structure in the neutron-rich nuclei such as ®He and ''Li, have shown the various interesting phenomena related to the
unbound states of nuclei [1,2]. In unstable nuclei, a few extra nucleons are bound to the system with small binding energies.
This fact indicates that unstable nuclei can easily emit one or two nucleons with small excitation energies around a few MeV.
This, in turn, implies that the position of the lowest threshold is very close to the ground state and that the coupling effect of
the continuum states becomes important even in the ground state. This property of unstable nuclei is quite different from
that of stable nuclei, in which the average binding energy is about 8 MeV per nucleon [3]. One of the interesting features of
the unstable nuclei is their so-called Borromean nature, in which no two-body subsystem has the bound states. With this
feature, the constituents of the system can have a bound state in the three-body case and the lowest threshold is of a three-
body emission, not of a two-body one. This condition requires both experimental and theoretical studies of the unbound
states in the subsystem. The physics of unstable nuclei is extended to the understanding of the scattering properties of
the nuclei. There are many experiments to investigate the scattering states of unstable nuclei, such as the observation of
new resonances in the spectroscopy, the various responses to an external Coulomb field, and the breakup reactions of an
unstable nucleus as a projectile. In theory, the unified description of structures and reactions is essential to the unstable
nuclear physics. The resonances embedded in the scattering states provide important information on the structures of the
compound system in addition to the scattering observables such as cross sections.

Nuclear resonances are described by applying the R-matrix theory [4], which was developed by Kapur and Peierls [5], and
characterized using the resonance energy and width [6]. They are often expressed by a complex energy and theoretically
calculated as a pole of the S-matrix. However, it is difficult for such conventional methods to treat many-body resonances
and non-resonant continuum states. Here, we refer to the states decaying into more than two-body constituents as “many-
body resonances”. A significant development in the treatment of resonances from two-body systems to many-body systems
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