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Strong coupling constant func_tlgns. The exact knowledge of Fhese quantities is also of importance for all
Structure functions precision measurements at hadron colliders. During the last two decades very significant
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status reached for both unpolarized and polarized lepton-hadron scattering based on

perturbative QCD.
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1. Introduction

Matter consists of regular structures at microscopic distances, which exhibit themselves at the crystalline, molecular, and
atomic levels [1]. The discovery of «, 8 and y radioactivity [2] provided new natural probes beyond the visible spectrum
of light and X-rays to resolve even smaller structures of matter. In 1911 E. Rutherford discovered the atomic nucleus of
a size much smaller than that of atoms through scattering of «-particles at gold [3]. Herewith the picture of matter at
small distances changed dramatically rising the question for further sub-structures. The composite nature of nuclei could
be explained after Chadwick’s [4] discovery of the neutron and Yukawa’s model for nuclear forces [5]. Another important
discovery was made by Frisch and Stern in 1933 measuring the anomalous magnetic moment of the proton with a different
value from that of point-particles, like electrons [6]. Later in 1939 Alvarez and Bloch measured the anomalous magnetic
moment of the neutron [7], both of which constituted first evidence on the compositeness of nucleons. The current values
of the nucleon magnetic moments are [8]

Hp = 2.792847356 £ 0.000000023 1y, un = —1.9130427 £ 0.0000005 py, (1.1)

with py = eh/2m, the nuclear magneton.

During the 1950s the Hofstadter experiments [9] operated at virtualities being large enough to reveal the charge
distribution inside nucleons, which is illustrated in Fig. 1. A positive core distribution and tail are found both for the proton
and neutron, with a positive vector cloud in case of the proton and a negative one for the neutron, pointing to first details
of the nucleon sub-structure. However, the specific nature of these distributions remained yet unexplained.

In 1964 Gell-Mann [11] and Zweig [12] proposed the quarks' as building blocks of hadrons to catalog the plethora

of observed mesons and baryons. During the late 1960s the MIT-SLAC experiments [13-19] measured deep-inelastic
electron-nucleon scattering at the Stanford Linear Accelerator at much shorter distances and beyond the resonance region.
The important finding of these experiments were scaling and the observation that the longitudinal structure function is
small, Fig. 2, confirming a prediction by Callan and Gross [20] for scattering off spin 1/2 particles. The scaling behavior of
structure functions had been predicted by Bjorken using current algebra methods [21]. These new observations led Feynman
to the parton model [22,23] of point-like fermionic constituents of the nucleons which react at high virtualities with the
exchanged gauge bosons in the deep-inelastic process directly.
Deep-inelastic scattering off constituent quarks has been discussed as early as 1967 [24] in connection to data of that
time [25]. After the discovery of scaling at SLAC also data taken in other experiments were analyzed for this behavior. One
example concerns data taken at DESY at lower values of |q?| [26], cf. Fig. 3, presented using the Rittenberg-Rubinstein
variable wy.

The parton model introduced a new level of compositeness for fermions being confined inside hadrons and related to
the strong interactions. The final quantum field theory of the strong interactions developed over a series of years. Already in
1965 Nambu [27] proposed a Yang-Mills [28] SU (3) gauge theory for the strong interactions, based on a three-valued charge
degree of freedom [29]. Before a symmetry was introduced using para-statistics [30] which later became color. At this time
it was unknown whether Yang-Mills theories could be renormalized. The formalism by Faddeev and Popov [31] needed
for their quantization in covariant gauges has been found two years later only. The renormalization of massless Yang-Mills
theories was proven by 't Hooft [32] and Quantum Chromodynamics (QCD) as the theory of strong interactions was proposed
by Fritzsch and Gell-Mann in 1972 [33] and Fritzsch et al. [34]. In 1973 Gross and Wilczek [35] and Politzer [36] studied the
running of the strong coupling constant of color octet Yang-Mills theory with color triplet quarks and found asymptotic
freedom, see also [37,38]. The Lagrangian of QCD, referring to the covariant R¢-gauges, is given by [39]

_ ; 1 1
Lo = Y Vg i(®) [i DT — my] Ygulx) — 2Fa" COFL, () — E@Ag(x))z + 9 X X)D™H x5 (X), (1.2)
q

where v/, (x) denotes the quark fields, A} (x) the gluon fields, Fi'"" = 9"AY — 3"A4 + gfurcAP*A" the field strength tensor,
fabe the structure constants of SU(3)., the gauge group of QCD, & € R the gauge parameter, x,(x) the ghost field, and the
covariant derivatives D% = §%9, — gfA. ,(x), p¥* = y, [5ud" — igAl tj‘}(], with t¢ the generators of SU(3).. Based
on this, perturbative calculations in Quantum Chromodynamics can be performed at large virtualities. Due to their high
complexity these calculations are usually being performed using computer algebra programs, a first dedicated of which was
SCHOONSCHIP by Veltman [40].

e Zweig named the hadron constituents aces.
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