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a b s t r a c t

For the Landau problem with a rotating magnetic field and a
confining potential in the (changing) direction of the field, we
derive a general factorization of the time evolution operator
that includes the adiabatic factorization as a special case. The
confining potential is assumed to be of a general form and it
can correspond to nonlinear Heisenberg equations of motion. The
rotation operator associated with the solid angle Berry phase is
used to transform the problem to a rotating reference frame. In the
rotating reference frame, we derive a natural factorization of the
time evolution operator by recognizing the crucial role played by a
gauge transformation. The major complexity of the problem arises
from the coupling betweenmotion in the direction of themagnetic
field andmotion perpendicular to the field. In the factorization, this
complexity is consolidated into a single operatorwhich approaches
the identity operator when the potential confines the particle
sufficiently close to a rotating plane perpendicular to the magnetic
field. The structure of this operator is clarified by deriving an
expression for its generating Hamiltonian. The adiabatic limit
and non-adiabatic effects follow as consequences of the general
factorization which are clarified using the magnetic translation
concept.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The study of time-dependent quantumsystemshas intimate connectionswith the geometric phase
concept [1–3] which has many applications in physics. When the Hamiltonian is time-dependent, the
time evolution operator is often nontrivial, i.e., U(t) ≠ exp(−i

 t
0 H(τ )dτ), and clarifying its structure

is of significance in understanding the dynamics of the system.
One may study U(t) corresponding to a time-dependent Hamiltonian by factorizing it into several

operators, each of them is simpler at least in some respects than U(t) itself. A well-known example
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of this is found in the proof of the quantum adiabatic theorem, as presented in standard texts such
as Messiah [4]. There the time evolution of a system in a changing environment is constructed as
the product of three operators, U = GDUϵ , where G is a path dependent geometric operator that
brings an initial eigenstate to an instantaneous eigenstate of the Hamiltonian, D is a dynamical
operator that only contributes dynamical phase factors to these eigenstates and Uϵ approaches the
identity operator in the adiabatic limit ϵ → 0. The parameter ϵ determines how fast the Hamiltonian
H[R(s)] = H[R(ϵt)] changes with time t , for a given map from (s ∈)[0, 1] to a path in the parameter
space M to which R belongs. For any such fixed map from [0, 1] to M, 1/ϵ provides a time scale
which is the total time it takes for R(ϵt) to travel through the given path in M . Another relevant
time scale is provided by h̄/Eg , where Eg is the minimum energy gap. The adiabatic limit corresponds
to (h̄/Eg)/(1/ϵ) → 0, which is made use of in the proof of the adiabatic theorem [4,5]. The path-
dependent geometric operator is (assuming the Hamiltonian has non-degenerate eigenstates for all
times)

G(R(ϵt)) =


m

|ψm(R(ϵt))⟩⟨ψm(R(0))|, (1)

where |ψm(R(ϵt))⟩ is the instantaneous eigenstate of H[R(ϵt)] that satisfies

⟨ψm(R(ϵt))|ψ̇m(R(ϵt))⟩ = 0. (2)

The expressions for the operators D and Uϵ also involve the use of eigenstates of the Hamiltonian.
This method of factorizing U using instantaneous eigenstates has certain limitations when dealing

with degenerate (including infinitely degenerate) energy eigenstates. For instance, in various Landau
systems involving a charged particle in time-dependent electromagnetic fields, the instantaneous
energy levels can be highly degenerate. Then there is no known general method for obtaining
useful information on G (which contains information on the non-Abelian Berry phase) or Uϵ using
instantaneous eigenstates. However, in a specific problem where the Hamiltonian is given, one may
use the algebraic structure of the Hamiltonian without referring to individual eigenstates to directly
construct a factorization of U that can then be applied to any representation and the associated
eigenstates. From this perspective, there seems to be more problems that can be explored.

This change in perspective also allows us to seek useful factorizations of U not limited by the
specific form U = GDUϵ , as long as the factorization can help clarify the structure of the total time
evolution operator U .

2. The problem and general considerations

The Landau problem is of significance in many areas in physics and its variations (see, for
instance, [6–9]) have often been discussed. In this paper our purpose is to study a charged particle
in a rotating magnetic field and a confining potential in the direction of the magnetic field. The
Hamiltonian is

H =
1
2m


p − eA(r, t)

2
+ V (r · n(ϵt)− L), (3)

where

A(r, t) =
1
2
Bn(ϵt)× r. (4)

The confining potential V

r ·n(ϵt)− L


is in the (changing) direction of the magnetic field Bn(ϵt) and

has equilibrium position at the plane r · n(ϵt)− L = 0 which is perpendicular to n(ϵt). The distance
between this plane and the origin of the coordinate system is L. This can be seen as an extension of
the usual Landau problem where n is in a fixed direction.

Here, V

r · n(ϵt)− L


is assumed to be of a general form. It can be a harmonic oscillator potential

or other types of potentials that in general correspond to nonlinear Heisenberg equations of motion.
The complexity of the problem ismainly caused by the coupling betweenmotion in themagnetic field
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