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Wederive the longwavelength effective action for the collectivemodes in
systems of fermions interacting via a short-range s-wave attraction,
featuring unequal chemical potentials for the two fermionic species
(asymmetric systems). As a consequence of the attractive interaction,
fermions form a condensate that spontaneously breaks the U(1)
symmetry associated with total number conservation. Therefore at
sufficiently small temperatures and asymmetries, the system is a
superfluid. We reproduce previous results for the stability conditions of
the systemas a function of the four-fermion coupling and asymmetry.We
obtain these results analyzing the coefficients of the low energy effective
Lagrangian of the modes describing fluctuations in the magnitude (Higgs
mode) and in the phase (Nambu–Goldstone, or Anderson–Bogoliubov,
mode) of the difermion condensate. We find that for certain values of
parameters, the mass of the Higgs mode decreases with increasing
mismatch between the chemical potentials of the two populations, if we
keep the scattering length and the gap parameter constant. Furthermore,
we find that the energy cost for creating a position dependent fluctuation
of the condensate is constant in the gapped region and increases in the
gapless region. These two features may lead to experimentally detectable
effects. As anexample,weargue that if the superfluid is put in rotation, the
square of the radius of the outer core of a vortex should sharply increase
on increasing the asymmetry, when we pass through the relevant region
in the gapless superfluid phase. Finally, by gauging the global U(1)
symmetry, we relate the coefficients of the effective Lagrangian of the
Nambu–Goldstone mode with the screening masses of the gauge field.
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1. Introduction

Experiments with trapped cold atomic gases have driven a renewed interest in fermionic pairing [1,2].
In particular, much effort has been devoted to understanding the superfluid phases of imbalanced
fermionic gases, featuring unequal number of particles of the distinct fermionic species that pair [3–24].

The system consists of fermions of two different species, ψ1 and ψ2, which correspond to two hyperfine
states of a fermionic atom like 6Li. These fermions have opposite spin and the interaction between them
can be tuned by employing a Feshbach resonance [25]. The strength of the interaction is given in terms of
the s-wave scattering length between the two species.

For zero imbalance, the systemproperties are qualitativelywell understoodusingmeanfield theory [26]. In
weak coupling the system lives in aweakly coupled BCS state and crosses over to a strongly coupled BEC state
through the resonance region.While the extremeBCS and BEC regimes are also in good quantitative control in
mean field theory, close to resonance (the unitarity region) a quantitative understanding of the phases comes
mainly from Monte-Carlo calculations [11]. (For other approaches see [27–29].) This is because close to
resonance the scattering length ismuch larger than the inter-particle distance and there is no small parameter
in the Lagrangian to expand in. Therefore fluctuations may change the mean field results substantially.

In standard BCS superfluids the chemical potentials of the two fermionic species are equal. An
imbalance in the number of ψ1 and ψ2 is implemented by taking the chemical potentials for the two species,
μ1 and μ2 respectively, to be different. (We will name our species in a way that μ1≥μ2.) If the chemical
potential difference, 2δμ=μ1−μ2 is much smaller than the magnitude of the gap parameter |Δ|, the
splitting cannot disrupt BCS superfluidity because the superfluid state with equal number densities is
energetically favored in comparison with a normal state with a fermionic imbalance. On the other hand, as
pointed out in [3], in the weak coupling regime, BCS superfluidity cannot persist for large values of δμ.
Indeed, there exists an upper limit for δμ (the so-called Chandrasekhar–Clogston limit), beyond which the
homogeneous superfluid state is no longer energetically favored over the normal phase.

For imbalanced systems, a qualitatively complete picture of the phase diagram has not been established
yet. Proposed possibilities are phase-separation [7], breached pair superfluidity [4,8–10], deformed Fermi
sea pairing [6] and non-homogeneous or LOFF pairing [5]. (See [30,31] for reviews.)

The phase diagram of the system at T=0 as a function of the scattering length and the chemical
potential difference has been explored in the mean field approximation in [13,16,23,32]. The authors find
that on the BCS side of the resonance there are no stable homogeneous superfluid phases that have gapless
Fermi surfaces. On the BEC side of the resonance, there are stable gapless superfluid phases, which can
exhibit a net polarization. At resonance, mean field theory suggests a first order phase transition from the
superfluid to the normal phase as δμ is increased, without any intervening gapless superfluid phase.
Consequences of the phase diagram for experiments with trapped atoms were explored in [16,18]. At
resonance if we fill different numbers of ψ1 and ψ2 in the harmonic trap, because the gapped phase cannot
feature a net polarization, the system phase separates with an unpolarized superfluid in the central region
of the trap and a polarized normal fluid at the exterior.

For non-zero imbalance close to the resonance, fluctuations may change the mean field results qual-
itatively. This has to be contrasted with the zero imbalance case, where fluctuations lead only to a
quantitative change of the mean field results. Indeed for non-zero imbalance many features of the phase
diagram are not caught by the mean field approximation. The authors of [15] go beyond mean field theory
by using results fromMonte-Carlo simulations [24] and propose a phase diagramwhich features a splitting
point near resonance at non-zero δμ, where the homogeneous superfluid, a LOFF-like inhomogeneous
phase, and the gapless superfluid phase coexist. They also find stable gapless fermionic modes with one
and two Fermi surfaces, on the BCS side of the resonance. A detailed treatment of fluctuations around the
resonance using an expansion in �=D−4 space dimensions at T=0 [29,33] supports this picture. A
different approach consists in generalizing the Fermi gas to a model with 2N hyperfine states, performing a
systematic 1/N loop expansion around the BEC–BCS solution [27,34]. The phase diagram at unitarity has
also been explored using a Superfluid Local Density Approximation (SLDA) [35,36]. With this method one
finds that on increasing δμ from zero at unitarity, there is an intervening window of values for which the
LOFF phase is favored over the homogeneous superfluid and the normal phases.

In this paper, we study small fluctuations about the mean field value of the gap parameter for a system
withmismatched Fermi surfaces. We consider fluctuations of Δ both in its phase and in its magnitude. Both
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