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a  b  s  t  r  a  c  t

The  coupling  of  faradaic  and  charging  currents  is shown,  by  numerical  simulation,  to  result  in
impedance  responses  showing  high-frequency  frequency  dispersion  that resembles  pseudo-Constant-
Phase-Element  (CPE)  behavior.  The results  show  that  coupling  of  faradaic  and  charging  currents  should
be  considered  when  modeling  the  impedance  response  for  systems  influenced  by  mass  transfer,  even  for
large  concentrations  of  supporting  electrolyte.
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1. Introduction

A controversy from the late 1960s over the correct method for
developing deterministic models for impedance response has been
largely neglected by the electrochemical community until it was
raised in 2012 by Nisancioglu and Newman. [1] In electrochem-
ical systems, the passage of current through an electrode can be
attributed to faradaic reactions and to double-layer charging. As
proposed by Sluyters, [2] the two processes are usually considered
separately for simulating impedance response. The total current
is subsequently obtained by adding the double-layer charging cur-
rent to the faradaic current. This approach was criticized by Delahay
and co-workers [3–5] because part of the flux of reacting species
should, in principle, contribute to the charging of the interface as
well as to the faradaic reaction. Nevertheless, the accepted proce-
dure for model development has been to assume that the faradaic
and charging currents are independent.[6] Indeed, the formalism
in which faradaic and charging processes are considered to be
uncoupled is documented in standard textbooks on impedance
spectroscopy. [7,8]

The opposing viewpoints are presented schematically in Fig. 1.
With a-priori separation (APS) of charging and faradaic currents,
the flux of reacting species contributes only to the faradaic reac-
tion, as shown in Fig. 1(a), and the charging current has contribution
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only from inert species. This corresponds to the currently accepted
procedure for model development. The schematic representation
of the case with no a-priori separation (NAPS) of charging and
faradaic currents is presented in Fig. 1(b). The reacting species are
seen to contribute to both the faradaic reaction and, along with the
inert species, to the charging current. The representation shown in
Fig. 1(b) is consistent with the arguments presented by Delahay.
[3–5]

Relaxation of the assumption that faradaic and charging
currents are independent requires coupling an explicit model
of the double layer to the convective diffusion equations for
each ionic species. Nisancioglu and Newman [1] provided an
appropriate mathematical formalism that provides the founda-
tion for the present work. Nisancioglu and Newman suggest
that the coupling of faradaic and charging currents must be
considered in general, but that the effect is not significant for
well-supported electrolytes for which the reacting species con-
tributes little to the interfacial charge. The object of this work
is to use numerical simulations to explore the influence that the
coupling of faradaic and charging currents has on the impedance
response.

2. Model Development

A two-dimensional impedance model was developed to study
the effect of nonuniform mass transfer, rotating disk electrode
geometry, and the coupling of charging and faradaic currents on
the impedance response. [9]
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Fig. 1. Schematic representation illustrating the contribution of the reacting species to the charging of the electrode-electrolyte interface corresponding to: a) the case with
a-priori  separation (APS); and b) the case with no a-priori separation (NAPS).

2.1. Mass Transport in Dilute Solutions

Conservation of species is expressed as

∂ci

∂t
= −∇  · Ni + Ri (1)

where the flux is given by

Ni = −Di

(
zici

F
RT

∇� + ∇ci

)
+ civ (2)

ci is the concentration of species i, zi is the charge number, Di is
the diffusivity, v is the mass-averaged velocity associated with the
rotating disk, and Ri represents the production of species i by homo-
geneous reactions. In the absence of homogeneous reactions and
under assumption that the diffusion coefficients are uniform,

∂ci

∂t
+ v · ∇ci = ziDi

F
RT

∇ · (ci∇�) +  Di∇2ci (3)

For a system with n species, n expressions in the form of equation
(3) are required; whereas the conservation of charge implies that

∇ · i = −∇ ·
(
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Equations (3) and (4) constitute a set of nonlinear equations.
In the frequency domain, the concentrations of each species are

described by

ci = ci + Re
{

c̃i exp (jωt)
}

(5)

where the bar notation represents the steady-state component,
and the tilde notation represents the oscillating component which
depends only on position. Similar definitions are applied for all
variables. The mass and charge conservation equations become

jωc̃i + v · ∇ c̃i = Di∇ ·
(
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respectively, where the higher order terms such as c̃i∇�̃ were
neglected. At the electrode surface, the flux of each species may
be expressed as
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The correlation between the flux and the current oscillations at
electrode boundary is discussed in two cases where the faradaic

current and the double-layer charging current are considered with
and without a priori separation of faradaic and charging currents.

2.2. No a Priori Separation of Faradaic and Charging Currents
(NAPS)

Under the assumption that the charge density on the metal
surface qm is dependent on the interfacial potential V and on the
concentration ci(0) of each species i, located outside the diffuse
region of charge, the variation of the surface charge density is given
by

dqm =
(

∂qm

∂V

)
ci(0)

dV +
∑

i

(
∂qm

∂ci(0)

)
V,cj /=  (i)(0)

dci(0) (9)

Equation (9) is written in terms of n + 1 parameters which are
treated as properties of the interface. These can be expressed as

C0 =
(

∂qm

∂V

)
ci(0)

(10)

where C0 is the usual differential capacitance, and

Ci =
(

∂qm

∂ci(0)

)
V,cj /=  (i)(0)

(11)

which can be expressed for species i = 1, . . .,  n. Both terms may  be
obtained from detailed models of the diffuse double layer.

The current at the electrode surface may  be expressed as

ĩ = jωq̃m + ĩF (12)

where the oscillations of the surface charge density and the faradaic
current density are approximated by Taylor series expansions
about their steady values as
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and
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Ṽ +
∑

i

(
∂iF

∂ci(0)

)
V,cj /=  (i)(0)

c̃i(0) (14)

respectively. The surface flux can be expressed as

Ñi,y(0) = − ∂�i

∂ci(0)
∂ci(0)
∂qm

jωq̃m − si

nF
ĩF (15)

where si is the stoichiometric coefficient for the reaction and �i
is the surface concentration of species i. Equations (12) and (15)
were applied as the boundary conditions to evaluate the impedance
response without a priori assumption of the separation of faradaic
and charging currents.
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