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a  b  s  t  r  a  c  t

Electrochemical  impedance  spectra  for  battery  electrodes  are  usually  interpreted  using models  that
assume isotropic  active  particles,  having  uniform  current  density  and  symmetric  diffusivities.  While
this  can  be  reasonable  for amorphous  or  polycrystalline  materials  with  randomly  oriented  grains,  mod-
ern electrode  materials  increasingly  consist  of  highly  anisotropic,  single-crystalline,  nanoparticles,  with
different  impedance  characteristics.  In  this  paper,  analytical  expressions  are  derived  for  the  impedance
of  anisotropic  particles  with  tensorial  diffusivities  and  orientation-dependent  surface  reaction  rates  and
capacitances.  The  resulting  impedance  spectrum  contains  clear signatures  of  the  anisotropic  material
properties  and  aspect  ratio,  as  well  as  statistical  variations  in  any  of these  parameters.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is used in vari-
ous fields, such as energy storage and conversion [1–6], cell biology
[7,8], corrosion science [9,10], and catalysis [11,12], to character-
ize transport, reaction, and accumulation of charge carriers in the
systems. For insertion battery electrodes, it has also been widely
used across many different material compositions [1–3]. Various
models have been introduced to interpret the battery impedance
behavior. After adopting the Randles model for combined contri-
bution of charge accumulation, insertion reaction, and transport in
active material [13,14], models were further developed to consider
different particle shape [15,16], size distribution [16–19], phase
transformation [20,21], and additional layers on the active parti-
cles [17,22,23]. Some also incorporate the concentration gradient
along the thickness of a porous electrode [17,23,24] and its hetero-
geneous thickness [18,19,25]. Nevertheless, essentially all models
assume isotropic properties for the active particles, regardless of
their area of application.

In contrast, most battery materials currently under investiga-
tion are strongly anisotropic, which means that behavior of charge
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carriers in the materials varies with the direction in respect to the
crystallographic axes [26–32]. The anisotropy is attributed to dif-
ferent activation barriers along the hopping paths of charge carriers
depending on the direction. Since many battery materials have high
electron mobility compared to that of ions [15,27], it is the ion hop-
ping that determines the anisotropy in transport of charge carriers
as well as in surface insertion kinetics [15,33,34]. For example,
LixCoO2 has a layered metal oxide structure, where lithium ions
can move quickly through the plane between the metal oxide lay-
ers, but their movement across the layers is less likely and very
slow [28,29]. On the other hand, LixFePO4 has an olivine structure,
where lithium ions can move quickly through one-dimensional
channels in the b-crystallographic direction [30–32]. Models also
predict that intercalation kinetics [35], phase separation dynam-
ics [36], and nucleation [37] are highly anisotropic due to tensorial
coherency strain and different composition-dependent surface on
each crystal facet [38,39]. Like LixFePO4, other important battery
materials tend to phase-separate when they are alloying with Li
ions [40–42], and their impedance characteristics are beginning to
be considered [20,21]. In this paper, however, we confine our scope
to the materials forming a single phase solid solution. This also
includes materials that tend to phase-separate, such as LixMn2O4
and LixFePO4, while outside of their miscibility gaps for x ≈ 0 or
x ≈ 1.

Isotropic models of active particles are still widely employed
in EIS studies of batteries, in part because traditional active par-
ticles were large enough to have many randomly oriented crystal
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Nomenclature

Ap particle surface area
c local ion concentration
cs surface ion concentration
(∇c)s ion concentration gradient at surface
ˆ̃c =

(
−∂��eq/∂c

)
ĉ/��̂, dimensionless local ion con-

centration
Cp particle surface capacitance
Csurf surface capacitance
Csurf,x =Csurf(ex), surface capacitance on x normal surface
Csurf,y =Csurf(ey), surface capacitance on y normal surface
Dch chemical diffusivity tensor
Dch,x chemical diffusivity in x direction
Dch,y chemical diffusivity in y direction
Dch,z chemical diffusivity in z direction
e elementary electric charge
ex unit vector in x direction
ey unit vector in y direction
i = √−1, unit imaginary number
j0 exchange current density
jacc accumulation current density
jins insertion current density
jtot total current density
Jp total current on particle surface
Jov overall electrode current
k Boltzmann’s constant
lx one half of particle length in x direction
ly one half of particle length in y direction
l̃x = lx/L̄x, dimensionless particle length in x direction
l̃y = ly/L̄y, dimensionless particle length in y direction
Lx one half of particle length in x direction, a random

variable
Ly one half of particle length in y direction, a random

variable
L̄x mean value of Lx

L̄y mean value of Ly

L̃x = Lx/L̄x, dimensionless particle length in x direction,
a random variable

L̃y = Ly/L̄y, dimensionless particle length in y direction,
a random variable

n surface normal vector
np index of summation for active particles
Np total number of active particles
PrVd

joint probability density function of Vd

PrL̃x,L̃y joint probability density function of L̃x and L̃y

Rp particle surface resistance
t time variable
T temperature
vd vector of distributed parameters, a realization
Vd vector of distributed parameters, a random vector

variable
x spatial variable in x direction
x̃ = x/lx, dimensionless spatial variable in x direction
X arbitrary variable
X0 reference state response in X
X1 ε-order perturbation in X
X̂ Fourier coefficient of perturbation in X
y spatial variable in y direction
ỹ = y/ly, dimensionless spatial variable in y direction
zacc local accumulation impedance
zD local diffusion impedance

zG local Gerischer impedance
zins local insertion impedance
ztot local total impedance
Zp particle impedance
Zov overall electrode impedance
z̃tot = ztot/�ct,x, dimensionless local total impedance
Z̃p = 8lyZp/�ct,x, dimensionless particle impedance
Z̃p,G Gerischer limit of dimensionless particle impedance
Z̃ov = 8L̄yNpZov/�ct,x, dimensionless overall electrode

impedance

Greek letters
 ̨ charge transfer coefficient

ˇx = �D,x/�ct,x, ratio of diffusion characteristic resis-
tance in x direction and charge transfer resistance
on x normal surface

ˇy = �D,y/�ct,y, ratio of diffusion characteristic fre-
quency in y direction and charge transfer resistance
on y normal surface

�x = ωRC,x/ωD,x, ratio of RC characteristic frequency on
x normal surface and diffusion characteristic fre-
quency in x direction

�y = ωRC,y/ωD,y, ratio of RC characteristic frequency
on y normal surface and diffusion characteristic fre-
quency in y direction

ε arbitrary small number
�� potential drop across electrolyte/active material

interface
��eq equilibrium potential drop of insertion reaction
−∂��eq/∂c Nernst shift coefficient
	 = lx/ly, geometric aspect ratio of a rectangular par-

ticle

 surface overpotential
� = �ct,y/�ct,x, ratio of charge transfer resistances
�xy correlation between L̃x and L̃y

�ct = kT/j0e, charge transfer resistance
�ct,x = �ct (ex), charge transfer resistance on x normal

surface
�ct,y = �ct

(
ey

)
, charge transfer resistance on y normal

surface
�D,x =

(
−∂��eq/∂c

)
lx/eDch,x, diffusion characteristic

resistance in x direction
�D,y =

(
−∂��eq/∂c

)
ly/eDch,y, diffusion characteristic

resistance in y direction
˙xx variance in L̃x

˙yy variance in L̃y

˙xy, ˙yx covariance of L̃x and L̃y

� = ωD,y/ωD,x, ratio of diffusion characteristic fre-
quencies

ω applied frequency
ωD,x = Dch,x/l2x , diffusion characteristic frequency in x

direction
ωD,y = Dch,y/l2y , diffusion characteristic frequency in y

direction
ωRC,p RC characteristic frequency of particle impedance

ωRC,x =
(

�ct,xCsurf,x

)−1
, RC characteristic frequency on x

normal surface
ωRC,y =

(
�ct,yCsurf,y

)−1
, RC characteristic frequency on y

normal surface
ω̃ = ω/ωD,x, dimensionless applied frequency
� domain of Vd
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