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a b s t r a c t

Quantum systems with variables in Z(d) are considered, and three
different structures are studied. The first isweakmutually unbiased
bases, forwhich the absolute value of the overlap of any twovectors
in two different bases is 1/

√
k (where k|d) or 0. The second is

maximal lines through the origin in the Z(d) × Z(d) phase space.
The third is an analytic representation in the complex plane based
on Theta functions, and their zeros. It is shown that there is a
correspondence (triality) that links strongly these three apparently
different structures. For simplicity, the case where d = p1 × p2,
where p1, p2 are odd prime numbers different from each other, is
considered.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

After the pioneering work by Schwinger [1], there has been a lot of work on various aspects of
a quantum system Σ(d) with variables in Z(d) (the ring of integers modulo d), described with a
d-dimensional Hilbert space H(d). The work combines Quantum Physics with Discrete Mathematics
and has applications to areas like quantum information, quantum cryptography, quantum coding, etc.
(for reviews see [2–8]).

A deep problem in this area is mutually unbiased bases [9–18]. It is a set of bases, for which the
absolute value of the overlap of any two vectors in two different bases is 1/

√
d. It is known that the

number M of mutually unbiased bases satisfies the inequality M ≤ d+ 1, and that when d is a prime
number M = d + 1. What makes the case of prime d special, is that Z(d) becomes a field, which is
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a stronger mathematical structure than a ring. For the same reason, if we consider quantum systems
with variables in theGalois fieldGF(pe) (where p is a primenumber), the number ofmutually unbiased
bases is M = pe + 1. The study of mutually unbiased bases for non-prime d, in which case Z(d) is a
ring (but not a field), is a very difficult problem. It is also related to the subjects of t-designs [19,20]
and latin squares [21].

Recent work [22,23] introduced a weaker concept called weak mutually unbiased bases (WMUB).
It is a set of bases, for which the absolute value of the overlap of any two vectors in two different
bases is 1/

√
k, where k|d (k is a divisor of d), or zero. It has been shown that there are ψ(d) (the

Dedekind ψ-function) WMUBs. This work has also studied the phase space Z(d) × Z(d) as a finite
geometry G(d).

There exists much literature on finite geometries. They consist of a finite number of points and
lines which obey certain axioms (e.g., [24–26] in a mathematics context, and [27–30] in a physics
context). Most of this work is on near-linear geometries, where two lines have at most one point in
common. The Z(d)× Z(d) geometry is based on rings and it does not obey this axiom. Two lines have
in common a ‘subline’ which consists of k points, where k|d. Refs. [22,23] have shown that there is
a duality between WMUBs in H(d) and lines in G(d). This shows a deep connection between finite
quantum systems and the geometries of their phase spaces.

A very different problem is the use of analytic functions in the context of physical systems. After the
pioneering work by Bargmann [31,32] for the harmonic oscillator, analytic representations have been
used with various quantum systems (e.g., [33–42]). In particular the zeros of the analytic functions
have been used for the derivation of physical results. For example, there are links between the growth
of analytic functions at infinity, and the density of their zeros [43–45], which lead to criteria for the
overcompleteness or undercompleteness of a von Neumann lattice of coherent states.

Refs. [46,47] have studied analytic representations for quantum systems with variables in Z(d),
using Theta functions [48] (see also Ref. [49]). Quantum states are representedwith analytic functions
in the cell S = [0, d) × [0, d) in the complex plane (i.e., in a torus). These analytic functions have
exactly d zeros in the cell S, which determine uniquely the state of the system.

In this paper we use this language of analytic functions for the study of WMUBs. We show that:
• Each of the d vectors in a WMUB has d zeros on a straight line.
• In a given WMUB, the various vectors have zeros on parallel lines. In different WMUBs, the slope

of the lines of zeros, is different.
• The d2 zeros in each WMUB, form a regular lattice in the cell S, which is the same for all WMUBs.

Based on these results we show that there is a triality between
• WMUBs.
• Lines through the origin in the finite geometry G(d) of the phase space.
• Sets of parallel lines of zeros of the vectors in WMUBs in the cell S.

These three mathematical objects, which are very different from each other, have the same
mathematical structure. The work links the theory of analytic functions and their zeros, to finite
quantum systems, finite geometries and more generally to Discrete Mathematics.

In order to avoid a complicated notation, in all sections except Section 2, we consider the case that
d = p1 × p2, where p1, p2 are odd prime numbers, different from each other (in Section 2 we state
in each subsection, what values d takes). All results are generalizable to the case d = p1 × · · · × pN ,
where d is an odd integer (see discussion). In the case of even dimension d (e.g., [50]), some aspects
of the formalism of finite quantum systems require special consideration, and further work is needed
in order to extend the ideas of the present paper, to this case. Also when d contains powers of prime
numbers, further work is needed (based on labelling with elements of Galois fields).

In Section 2 we introduce very briefly finite quantum systems, their analytic representation, and
mutually unbiased bases, in order to define the notation. In Section 3 we review briefly the formalism
of weak mutually unbiased bases. An important ingredient is the factorization of Σ(d) in terms of
smaller systemsΣ(p1) andΣ(p2), which is based on the Chinese remainder theorem, and its use by
Good [51] in the context of finite Fourier transforms. In Section 4, we use the analytic representation
to study WMUBs, and prove the results that we mentioned above. We conclude in Section 5, with a
discussion of our results.
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