
Annals of Physics 371 (2016) 437–459

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Trajectory description of the quantum–classical
transition for wave packet interference
Chia-Chun Chou
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

a r t i c l e i n f o

Article history:
Received 26 April 2016
Accepted 2 June 2016
Available online 9 June 2016

Keywords:
Quantum–classical transition
Wave packet interference
Quantum trajectory
Classical time-dependent Schrödinger
equation

Quantum Hamilton–Jacobi equation

a b s t r a c t

The quantum–classical transition for wave packet interference is
investigated using a hydrodynamic description. A nonlinear quan-
tum–classical transition equation is obtained by introducing a de-
gree of quantumness ranging from zero to one into the classical
time-dependent Schrödinger equation. This equation provides a
continuous description for the transition process of physical sys-
tems from purely quantum to purely classical regimes. In this
study, the transition trajectory formalism is developed to provide
a hydrodynamic description for the quantum–classical transition.
The flowmomentumof transition trajectories is defined by the gra-
dient of the action function in the transition wave function and
these trajectories follow the main features of the evolving prob-
ability density. Then, the transition trajectory formalism is em-
ployed to analyze the quantum–classical transition of wave packet
interference. For the collision-like wave packet interference where
the propagation velocity is faster than the spreading speed of the
wave packet, the interference process remains collision-like for
all the degree of quantumness. However, the interference features
demonstrated by transition trajectories gradually disappear when
the degree of quantumness approaches zero. For the diffraction-
like wave packet interference, the interference process changes
continuously from a diffraction-like to collision-like case when the
degree of quantumness gradually decreases. This study provides an
insightful trajectory interpretation for the quantum–classical tran-
sition of wave packet interference.
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1. Introduction

Various trajectory approaches have been developed to study quantum dynamical processes
because these methods can provide new physical insights into the dynamics. As a trajectory
formulation of quantum mechanics [1–3], Bohmian mechanics has been utilized to analyze a diverse
range of physical processes through computing and interpreting real-valued quantum trajectories
from a precomputed wave function, including the dissociation of molecules at metal surfaces, atom
diffraction by surfaces, quantum nonlocality, quantum interference, the geometric phase, and the
Airy wave packet dynamics [4–14]. On the other hand, the quantum trajectory method (QTM) has
been developed as a computational tool to generate the wave function by propagating quantum
trajectories through the integration of the hydrodynamic equations on the fly [15–17]. In addition,
the bipolar representation of the total wave function has been used to reconcile semiclassical and
Bohmian mechanics for stationary states and wave packet dynamics [18–26]. Recently, dissipative
Bohmian trajectories have been analyzed within the Caldirola-Kanai framework [27]. In addition,
the nonlinear Schrödinger–Langevin equation has been generalized for quantum processes in the
presence of nonlinear friction and a heat bath [28,29], and this equation has been solved for the ground
state of quantum systems by propagating quantum trajectories [30,31]. Remarkable progress has
been made in the development and application of real-valued quantum trajectories for providing an
analytical, interpretative, and computational framework for quantum dynamical problems [3,32–35].

In contrast with the real-valued QTM, complex-valued quantum trajectories have been developed
as both the analytic and synthetic approaches to quantum dynamical problems. Based on the complex
quantum Hamilton–Jacobi formalism [36,37], the complex QTM has been used to analyze both
stationary bound and scattering state problems [38–52]. Quantum interference demonstrated by
the head-on collision of two Gaussian wave packets has been thoroughly analyzed using complex
quantum trajectories [53–55]. In computational applications, the complex QTM has been applied
to one-dimensional and multi-dimensional wave packet scattering problems [56–68]. In addition,
this approach has been used to describe the interference effects and node formation in the wave
function [69,70], to calculate energy eigenvalues [71], and to improve the complex time-dependent
Wentzel–Kramers–Brillouin (WKB)method [72–74]. Furthermore, the complexQTMhas been applied
to the dissipative dynamics described by a stochastic Liouville–von Neumann equation with complex
noise forces [75] and to nonadiabatic molecular dynamics [76,77].

In Bohmian mechanics, the wave function is first written in terms of the real amplitude and
the real action function. Substituting the polar decomposition of the wave function into the time-
dependent Schrödinger equation (TDSE) yields a system of two coupled partial differential equations,
the continuity equation and the quantum Hamilton–Jacobi equation (QHJE). In contrast with the
classical Hamilton–Jacobi equation, the QHJE includes not only the kinetic energy and the classical
potential but also the quantum potential. It is the quantum potential that brings all quantum effects
into the hydrodynamic formulation.

The classical analog of the TDSE has been derived to provide a field description for classical
dynamics [78–82]. The classical TDSE is obtained by subtracting a quantumpotential term in the TDSE,
and this additional term has the effect of erasing quantum effects. Because the additional term is
nonlinear, the superposition principle does not hold for the classical TDSE. The classical TDSE can be
converted into the classical hydrodynamic equations of motion. Although the dynamics are classical,
the classicalwave function satisfying the classical TDSE leads to an approximate quantum probability
amplitude. The classical TDSE for an ensemble of classical trajectories has been thoroughly discussed
using a quantum language [3,33].

In a previous study [83], a nonlinear quantum–classical transition equation has been proposed
by introducing a degree of quantumness ranging from zero to one into the classical TDSE. When the
degree of quantumness is equal to one, the transition equation reduces to the TDSE. On the contrary,
we recover the classical TDSE when the degree of quantumness completely disappears. Hence, the
transition equation provides a continuous description of physical systems for the quantum–classical
transition. In addition, it has been shown that the nonlinear quantum–classical transition equation is
equivalent to a linear scaled TDSE with a rescaled Planck’s constant.
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