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a b s t r a c t

We prove two statements about the long time dynamics of inte-
grable Hamiltonian systems. In classical mechanics, we prove the
microcanonical version of the Generalized Gibbs Ensemble (GGE)
bymapping it to a known theorem and then extend it to the limit of
infinite number of degrees of freedom. In quantum mechanics, we
prove GGE for maximal Hamiltonians—a class of models stemming
from a rigorous notion of quantum integrability understood as the
existence of conserved charges with prescribed dependence on a
system parameter, e.g. Hubbard U , anisotropy in the XXZ model
etc. In analogy with classical integrability, the defining property of
these models is that they have the maximum number of indepen-
dent integrals. We contrast their dynamics induced by quenching
the parameter to that of randommatrix Hamiltonians.

© 2016 Elsevier Inc. All rights reserved.

The past decade haswitnessed an unprecedented experimental access to global coherent dynamics
of many-body interacting systems [1–7]. As a result, a new area that could be called ‘‘far from
equilibrium many-body Hamiltonian dynamics’’, ‘‘coherent many-body dynamics’’ or ‘‘quantum
quenches’’ has emerged. A major part of research in this area has focused on testing the GGE [8,9]
in various integrable models. GGE refers to a density matrix or, in the case of classical mechanics, a
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phase space distribution function

ρ = Z−1e
−


k

βkHk
, (1)

where Hk are a (complete in some sense) set of integrals of motion for system Hamiltonian H and Z
is a normalization constant. Suppose the system evolves with H starting from a non-stationary state.
The statement of GGE is that the infinite time average of an observable O coincides with its ensemble
average with the density matrix ρ [10].

Most authors test GGE in quantummodelswithout clarifying their notion of quantum integrability.
The latter however is a tricky concept with no generally accepted definition, making the quantum
GGE conjecture essentially unfalsifiable. The notion of classical integrability on the other hand is
unambiguous [11]. For this and other reasons, it makes sense to first understand the status of GGE in
classical mechanics.Wewill see that themicrocanonical version of GGE – GeneralizedMicrocanonical
Ensemble – is exact for a general classical integrable Hamiltonian. In a parallel line of inquiry, we will
prove GGE for a class of models that emerge from a recently proposed complete notion of quantum
integrability.

Generalized Microcanonical Ensemble (GME) in classical mechanics is the following phase space
distribution:

ρ(p, q) = L−1
n

k=1

δ (Hk(p, q) − hk) , (2)

where q = (q1, . . . , qn) and p = (p1, . . . , pn) are the generalized coordinates and momenta and
L is a normalization constant. Suppose the system evolves with an integrable Hamiltonian H(p, q)
starting from a point (p0, q0). Let hk = Hk(p0, q0) be the values of its integrals of motion for this
initial condition. The statement of GME is that the time average of any dynamical variable O(p, q) is
equal to its phase space average with distribution (2),

lim
τ→∞

1
τ

 τ

0
O (t) dt =


O(p, q)ρ(p, q)dpdq, (3)

where O (t) = O(p(t), q(t)). Eq. (3) also holds for integrable classical spin Hamiltonians H({s⃗k}), in
which case pk = cos θk and qk = φk, where θk and φk are the polar and azimuthal angles defining
the spin direction. Eq. (3) is valid for any number of degrees of freedom n, so one can take the limit
n → ∞ on both sides. Moreover, we will argue that the limits n → ∞ and τ → ∞ commute (a
tremendous simplification) as long as the frequency spectrum of O(t) is free from a certain anomaly
near the zero frequency.

As a first step towards a similarly unambiguous statement in quantummechanics, we also analyze
GGE in the framework of a rigorous formulation of quantum integrability [12]. Simplest models
that arise in this approach are type-1 or maximal Hamiltonians—general N linearly independent
commuting N × N Hermitian matrices of the form H(x) = T + xV , where x is a real parameter.
Type-1matrices represent blocks of various exactly solvable many-bodymodels (such as 1D Hubbard
and Gaudin magnets) for certain sets of quantum numbers (total spin projection etc.) [12–15] and
also describe e.g. a short range impurity in a metallic grain [16], see below for more detail. We prove
GGE is exact for any N and explicitly determine βk in Eq. (1). The GGE density matrix for quenches
of the parameter x turns out to be non-thermal for type-1 Hamiltonians. In contrast, if we choose
T and V randomly, the post-quench asymptotic state is thermal in N → ∞ limit. This emphasizes
the importance of a well-defined notion of integrability as naively one could claim N integrals of
motion (e.g. projectors onto the eigenstates) in the random matrix example too. We also relate the
non-thermal behavior to localization.

A characteristic feature of type-1 and classical integrable systems is that in both cases the number
of independent integrals is the maximum allowed by the definition. Their dynamics are constrained
by the integrals apart from linear in time phases (angles) that cancel out upon time-averaging or
dephase in the thermodynamic limit. As the result, the integrals of motion fully determine infinite
time averages. The situation when the number of conservation laws is appreciably less than the
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