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a b s t r a c t

We give a counterexample to the well-known Ehrenfest’s asser-
tion that the existence of stable electromagnetic bound systems is
impossible in spaces of more than three dimensions. If we require
that theMaxwellian laws of electromagnetismbepreserved for any
even spacetime dimension, and that the dynamics as a whole be
consistent, then the laws of mechanics must be amended by the
addition of terms with higher derivatives. We consider a nonrela-
tivistic particle with an acceleration-dependent Lagrangian which
moves in an attractive 1/r3 potential in five-dimensional space.
There are compactly supported motions whose projections on the
SO(5)-reducedHamiltonian systemare Poisson equilibriumpoints.
The nonlinearly stable equilibria correspond to physically stable
motions over the direct product of two three-spheres in configura-
tion space. The Energy-Casimir method turns out to be not appro-
priate for checking the stability. The studied system is shown to be
stable through an analysis of numerical solutions to the equations
of motion for small perturbations on the reduced phase space. This
implies that falling to the center is prevented.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is widely believed that a charged particle driven by an attractive electrostatic central force in
D-dimensional space RD is unable to execute compactly supported stable motions if D ≥ 4; all
motions are compactly supported ifD ≤ 2; and both compactly and noncompactly supportedmotions
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of charged particles are peculiar to R3. This belief goes back to Ehrenfest’s analysis of the question:
‘‘Bywhich singular characteristics do geometries and physics inR3 distinguish themselves from those
in the other RD’s?’’ raised in his 1917 and 1920 papers [1,2]. To answer this question Ehrenfest
assumed that the laws of mechanics and electrodynamics in an imaginary world with D spatial
coordinates are essentially the same as those in R3, or, more exactly, the laws governing a closed
system of N charged point particles are encoded into the conventional action

S = −
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where ΩD−1 is the area of the unit (D−1)-sphere. In fact, one need only look into the behavior of two
particles with charges Ze and −e. Ehrenfest supposed that, for any D, the two-particle problem can be
reduced to a single-particle Kepler problemwhich describes the behavior of a particle of reducedmass
m̄ and charge−e in a spherically symmetric attractive field generatedby a static charge Zeplaced at the
origin. A distinctive feature of this problem is that every trajectory is planar. The qualitative analysis
of the Kepler problem is greatly facilitated with the aid of the effective potential (see, e.g., [3])

U(r) =


m̄2 +

L2

r2
+ U(r). (2)

Here, L2 =


i<j L
2
ij is the square of angular momentum, and U(r) = eφ(x) the potential energy of

interaction between the particles. The time component of the electromagnetic vector potential φ(x)
obeys the D-dimensional Poisson equation

∇
2φ(x) = −ΩD−1 Ze δ(D)(x). (3)

The solution to Eq. (3) is

φ(x) = −Ze

sgn(2 − D) |x|2−D D ≠ 2,
log |x| D = 2. (4)

For D > 3, the potential energy eφ(x) is more singular than the centrifugal term |L|/r , and falling to
the center (or, alternatively, going to infinity) is unavoidable, while, for D = 3 and Ze2 ≤ |L|, eφ(x) is
less singular than |L|/r , which prevents falling to the center, so that stable orbits are possible. This has
led Ehrenfest to conclude that D = 3 establishes a line of demarcation between worlds where stable
bound systems such as a hydrogen atom cannot exist from those where such systems are possible.1

Clearly this analysis is oversimplified because the interaction between the particles is represented
by the electrostatic potential (4), and the retardation effect is neglected. If radiation of the planetary
electron were taken into account, then this electron would fall to the nucleus even in R3. To remedy
the situation, Ehrenfest invoked the Bohr quantization which evidences that the hydrogen atom is
stable in real space due to its quantum nature. Ehrenfest found that the Bohr model of the atom in
RD with D ≥ 5 exhibits the spectrum of positive discrete energy levels, En ∼

D−2
D−4 n2(D−2)/(D−4). This

suggests that the system tends to go to lower and lower energy levels which corresponds to ever
increasing radii of the associated orbital motion, to yield finally the ionization of the atom.

A more rigorous analysis of this problem confirming the Ehrenfest’s general conclusion was
proposed by Gurevich andMostepanenko [4]. They studied a quantum system of two particles whose
interaction is given by (4), using the conventional Schrödinger equation. They showed that, for D ≥ 4,
the discrete energy spectrum extends to −∞. It has long been known [5] that such systems tends

1 We use the term ‘‘stability’’ rather loosely because compact motions in the central force problem are unstable in the sense
of Lyapunov. For example, a small perturbation of radius of a Kepler orbit eventually results in that the perturbed and initial
orbits become 180◦ out of phase, which means that this motion is unstable in the Lyapunov sense. Intuitively, an orbiting is
stable if a small perturbation of the solution to the equations of motion leaves it in a compact region of the phase space, with
the understanding that the fall to the center is prevented. In the Kepler problem we actually deal with just this stability rather
than Lyapunov stability. We will call such compact motions physically stable.
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