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a b s t r a c t

The notion of entropy is ubiquitous both in natural and social
sciences. In the last two decades, a considerable effort has been
devoted to the study of new entropic forms, which generalize the
standard Boltzmann–Gibbs (BG) entropy and could be applicable
in thermodynamics, quantum mechanics and information theory.
In Khinchin (1957), by extending previous ideas of Shannon
(1948) and Shannon and Weaver (1949), Khinchin proposed a
characterization of the BG entropy, based on four requirements,
nowadays known as the Shannon–Khinchin (SK) axioms.

The purpose of this paper is twofold. First, we show that there
exists an intrinsic group-theoretical structure behind the notion of
entropy. It comes from the requirement of composability of an
entropy with respect to the union of two statistically independent
systems, that we propose in an axiomatic formulation. Second,
we show that there exists a simple universal family of trace-
form entropies. This class contains many well known examples of
entropies and infinitely many new ones, a priori multi-parametric.
Due to its specific relation with Lazard’s universal formal group
of algebraic topology, the new general entropy introduced in this
work will be called the universal-group entropy. A new example of
multi-parametric entropy is explicitly constructed.
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1. Introduction

Entropy is a fundamental notion, at the heart of modern science. In the second half of the
twentieth century, its range of applicability has been extended from the traditional context of classical
thermodynamics to new areas such social sciences, economics, biology, quantum information theory,
linguistics, etc. More recently, the role of entropy in the theory of complex systems has been actively
investigated. From one side, several studies were devoted to axiomatic formulations, aiming at
clarifying the foundational aspects of the notion of entropy. From the other side, many researchers
pursued the idea of generalizing the classical Boltzmann–Gibbs statistical mechanics. Consequently,
a plethora of new entropic forms, designed for extending the applicability of BG entropy to new
contexts, was introduced.

The first research line was started by the seminal works by Shannon [1,2] and Khinchin [3].
A set of axioms, nowadays called the SK axioms, characterizing uniquely the BG entropy, was
introduced (we shall make reference to the formulation of the axioms reported in Appendix A). The
axioms (SK1)–(SK3) represent natural requirements (continuity, maximum principle, independence
from zero probability events), that should be satisfied by any functional playing the role of an
entropy. Instead, the axiom (SK4) simply characterizes the behavior of an entropy with respect to
the composition of two systems, which reduces to additivity in the case of statistical independence of
the systems.

For long time, additivity was interpreted as the property that ensures extensivity, i.e. the linear
dependence of entropy on the number of particles of a system. Extensivity is crucial for an entropy
to be thermodynamically admissible. Surprisingly, the two concepts are completely independent:
additivity does not imply, nor is implied by extensivity. In addition, no entropy, irrespectively of
being additive or nonadditive, can be extensive in any dynamical regime. For instance, if W (N) is
the total number of states of a complex system as a function of the number of its particles N , it turns
out that a (sufficient) condition for the BG entropy to be extensive over the uniform distribution is
that W (N) ∼ kN , with k ∈ R+; however, ifW (N) ∼ Nk, it is not.

The second research line, i.e. the study of generalized entropies and thermostatistics, in which the
additivity axiom is explicitly violated, has become an extremely active research area in the last three
decades. Since the work [4], many new entropic functionals have been proposed in the literature (see
e.g. [5–16]). From the point of view of statistical mechanics, they may have a role in weakly chaotic
regimes, when the ergodicity hypothesis is violated and the correlation functions exhibit a non-
exponential decay, typically a power-law one [17]. In particular, Tsallis entropy, which is nonadditive,
is extensive for special values of the parameter q in regimes where the BG entropy is not [18].

Another source of nonadditive entropies is Information Theory. In this context, generalized
entropies can provide different versions of Kullback–Leibler-type divergences [19], useful for
constructing comparative tests of sets of data.

In the study of entanglement, generalized entropies arise as useful alternatives to the vonNeumann
entropy [9,20]. As shown in [21], the von Neumann entropy may not avoid the detection of fake
entanglement. The need for generalized nonadditive entropies in order to design efficient criteria for
separability has been advocated in [9]. Recently, the relevance of generalized entropies in processes
with quantum memory has been recognized [22].

In the present analysis of the mathematical foundations of the concept of entropy, we wish to
point out the centrality of the notion of composability. We shall say that an entropy is composable if
the following requirements are satisfied. First, given two statistically independent systems A and B,
the entropy of the composed system A∪B depends on the entropies of the two systems S(A) and S(B)
only (apart possibly a set of parameters). This is the original formulation of the concept, as e.g. in [23].
In addition, we require further properties, as the symmetry of a given entropy in the composition of
the systems A and B, the stability of total entropy if one of the two systems is in a state of zero entropy,
and the associativity of the composition of three independent systems (see axioms (C1)–(C4) below).
Within this framework, the composability property, in this new sense, is equivalent to the existence of
a group-theoretical structure underlying the notion of entropy, which guarantees the physical plausibility
of the composition process.
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