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h i g h l i g h t s

• Peirels phase for an arbitrary path in space–time established.
• Gauge-invariant Green functions and the Power–Zienau–Wooley transformation connected.
• Limitations on possible polarization and magnetization fields established.
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a b s t r a c t

We present a gauge-invariant description of Green function dy-
namics introduced by means of a generalized Peirels phase in-
volving an arbitrary differentiable path in space–time. Two other
approaches to formulating a gauge-invariant description of sys-
tems, the Green function treatment of Levanda and Fleurov
[M. Levanda, V. Fleurov, J. Phys.: Condens. Matter 6 (1994) 7889]
and the usual multipolar expansion for an atom, are shown to arise
as special cases of our formalism. We argue that the consideration
of paths in the generalized Peirels phase that do not lead to intro-
duction of an effective gauge-invariant Hamiltonian with polariza-
tion andmagnetization fieldsmay prove useful for the treatment of
the response of materials with short electron correlation lengths.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

While at a fundamental level the interaction of the electromagnetic field with charges is described
by the minimal coupling Hamiltonian, for applications in atomic and molecular physics it is usu-
ally more convenient to use the transformed Hamiltonian developed by Power, Zienau, and Wooley
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(PZW) [1], and elaborated and clarified by Healy [2]. In the PZW transformation the interaction Hamil-
tonian is converted to one involving polarization and magnetization fields interacting directly with
the electric and magnetic fields, which is thus gauge invariant. Often one then expands the polariza-
tion and magnetization fields in terms of electric and magnetic multipole moments, yielding an ap-
proximate Hamiltonian that takes into account the variations of the electric and magnetic fields over
the atom or molecule to the order required. Even before such an expansion is undertaken, a ‘‘special
point’’ must be chosen to effect the PZW transformation. For an atom this special point is often taken
to be the position of the nucleus, idealized as fixed; more generally it can be taken to be the position
of the center of mass of an atom or molecule [2].

Another strategy for constructing gauge-invariant quantum dynamical equations is the approach
of Levanda and Fleurov (LF) [3,4]. They showed that by concentrating on the equations of motion
for the Green functions, rather than modifying the Hamiltonian formulation of those equations, a
gauge-invariant description of the dynamics is possible. Their approach employs a generalized Peirels
phase that involves an integration along a straight line in space–time between the two Green function
variables; see also [5] for a discussion and [6] for the extension to superconductors. The LF approach
is attractive because it does not rely on a special point, as does the PZW transformation. Thus this kind
of approach, or a related one, could provide a basis for gauge-invariant descriptions of the interaction
of radiation with charges in extended systems, such as solids, where the use of a special point does
not seem to make physical sense. Gauge-invariant descriptions would be useful because the straight-
forward application of the minimal coupling Hamiltonian often requires the identification of sum
rules to eliminate apparent divergences, even in problems as simple as the linear and nonlinear
optical response of clean, cold semiconductors, with electrons treated in the independent particle
approximation [7–10].

These apparent divergences are associated with the difference between the mechanical momenta
of the charges and their canonical momenta, described by a term involving the vector potential, and
they seem to be avoided whenever a gauge-invariant description of the quantum dynamics can be
constructed. There is a long tradition of work on special cases where this has been implemented.
For situations where the response of the medium can be approximated as responding locally to the
electric field, taken as uniform, an approach originally pioneered by Adams and Blount [11] can be
applied. A quantity that plays the role of the matrix element of a dipole moment operator between
Bloch states can be introduced, involving interband and intraband contributions [12]. The approach
of the ‘‘modern theory of polarization’’ [13], where polarization and magnetization are associated
with the appropriate moments of Wannier functions [14,15], or extensions necessary in materials
with nonzero Chern numbers [16], can be seen to be closely related to this, for these moments can be
written in terms of the effective matrix elements of Adams and Blount and their generalizations. But
to date these programs are restricted to the assumption of uniform or nearly uniform applied fields.

So an exploration of strategies based on the LF approach to treat the response of solids to more
arbitrarily varying electromagnetic fields seems promising. A natural first step would be to link that
approachwith the PZW transformation,which is to date probably themost successful gauge-invariant
description of the response of charges to the electromagnetic field. Yetwhen bothmethods are applied
to an atom, the equivalence can be seen only aftermuchmanipulation, evenwhen the electromagnetic
field varies little over the atom. The first goal of this paper is to clarify the link between the gauge-
invariant descriptions of LF and PZW.

To do this we find it is necessary to extend the LF approach to treat a Peirels phase involving an
arbitrary path in space–time connecting the two Green function variables. This is done in Section 2,
where we construct a generalized LF approach (GLF). Then we can recover the LF and PZW results by
the choice of particular paths. This is done in Sections 3 and 4.

Establishing those connections illustrates that there are two qualitatively different types of Peirels
phase that can arise in a GLF approach. In the first type, which appears in recovering the PZW results,
the generalized Peirels phase is given by the difference of the values that a single variable function
takes at the two space–time points in the Green function. In the second type, which appears for
example in the original LF approach, it cannot be written in that form. In Section 4 we show that
the Peirels phase of the first type leads to the gauge-invariant Green functions that can be understood
as constructed from transformed field operators, which satisfy dynamical equations following from an
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