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h i g h l i g h t s

• We apply the thermo-field dynamics method to the master equation of a laser.
• We find the operator-sum (Kraus) representation for the density operator.
• We find both the normally ordered and compact forms of ρ(t) for ρ0 = |z⟩⟨z|.
• We find the exact expression of the laser’s entropy.
• Our results reveal quantitatively how a laser beam can be generated in a laser.
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a b s t r a c t

For the first time, we obtain the entropy variation law in a laser
process after finding the Kraus operator of the master equation
describing the laser processwith the use of the entangled state rep-
resentation. The behavior of entropy is determined by the compe-
tition of the gain and damping in the laser process. The evolution
formula for the number of photons is also obtained.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Since the theoretical foundation proposed by Albert Einstein in 1917 [1] and the building of first
functioning laser by Theodore H. Maiman in 1960, lasers have been successfully applied in various
areas, including the laser cooling technique developed by Chu et al. [2,3]. As one of themost important
concept in physics, entropy measures the disorder of a system. Studying the evolution of the entropy,
we can get a clear understanding of how a laser beam is created by appropriate pumping. Some work
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has been done concerning the entropy exchange between a laser and its environment [4,5]. However,
the evolution of entropy in a laser itself has not yet been studied. In this work, we shall derive the
entropy evolution law of a laser process. Our results explain how the self-organization phenomenon
happens in a laser.

In quantum optics theory, the time evolution of a laser in the lowest-order approximation can be
described by the following master equation of the density operator [6–9]:

dρ (t)
dt

= g

2aĎρ (t) a − aaĎρ (t) − ρ (t) aaĎ


+ κ


2aρ (t) aĎ − aĎaρ (t) − ρ (t) aĎa


, (1)

where g and κ are the cavity gain and the loss, respectively, and aĎ and a are the photon creation
operator and the photon annihilation operator, respectively. It is also known that the evolution due to
the interaction between a system and its environment can be ascribed to an evolution from the initial
density operator ρ0 to ρ (t):

ρ (t) =

∞
n=0

Mnρ0MĎ
n . (2)

Such an expression is named an operator-sum (Kraus) representation, and Mn is named the Kraus
operator. So far as our knowledge is concerned, the entropy variation in a laser channel has never
been reported. In this paper, we shall show how the entropy of an initial coherent state ρ0 = |z⟩ ⟨z|
(the fact that an n-photon distribution in a coherent state is a Poisson distribution exactly fits the
measurement result of photon distribution in a laser light) varies in the laser process. Before doing
this, we first derive the Kraus operator by solving the master equation (1).

Our way to do this is by introducing the two-mode entangled state

|η⟩ = exp


−
1
2
|η|

2
+ ηaĎ − η∗ãĎ + aĎãĎ


|00̃⟩, (3)

where ãĎ is a fictitious mode independent of the real mode aĎ, and |0̃⟩ is annihilated by ã,

ã, ãĎ


= 1.

The state |η = 0⟩ possesses the properties

a|η = 0⟩ = ãĎ|η = 0⟩,

aĎ|η = 0⟩ = ã|η = 0⟩,

(aĎa)n|η = 0⟩ = (ãĎã)n|η = 0⟩.

(4)

Operating both sides of (1) on the state |η = 0⟩ ≡ |I⟩, and denoting |ρ⟩ = ρ|I⟩, and using (4), we
have the time-evolution equation for |ρ (t)⟩:

d
dt

|ρ (t)⟩ =


g

2aĎãĎ − aaĎ − ããĎ


+κ


2aã − aĎa − ãĎã

 |ρ (t)⟩ , (5)

where |ρ0⟩ ≡ ρ0 |I⟩, and ρ0 is the initial density operator.
The formal solution of (5) is

|ρ (t)⟩ = U (t) |ρ0⟩ , (6)

and

U (t) = exp


gt

2aĎaĎ − aaĎ −aaĎ

+κt

2aa − aĎa −aĎa


. (7)

It is challenging to disentangle the exponential operator U (t). This reminds us of two theorems about
the normally ordered expansion of multimode bosonic exponential operators, which is helpful in
disentangling U (t).
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