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admits exactly one stable monopole charge, and each unstable
monopole admits 2 > (2|q| — 1) negative modes, where the sum
goes over the negative eigenvalues g of an operator related to the
non-Abelian charge Q of Goddard, Nuyts and Olive. An explicit
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Morse theory well as the negative modes of the Hessian at any other charge is
Configuration space topology given. The relation to loops in the residual group is explained. From
Energy-reducing sphere the global point of view, the instability is associated with energy-

reducing two-spheres, which, consistently with the Morse theory,
generate the homology of the configuration space. Our spheres are
tangent to the negative modes at the considered critical point, and
may indicate possible decay routes of an unstable monopole as a
cascade into lower lying critical points.
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1. Introduction: stability

Magnetic monopoles arise as exact solutions of spontaneously broken Yang-Mills-Higgs
theory [1-5], see Section 2 for an outline. It has been pointed out by Brandt and Neri [6] and
emphasized by Coleman [3], however, that most such solutions are unstable when the residual gauge
group H is non-Abelian.

This review, which heavily draws on previous work of two of us with late O’Raifeartaigh, [7,8],
is devoted to the study of various aspects of “Brandt-Neri-Coleman” monopole instability. Further
related contributions can be found in [9-11].

1.1. Local aspects: the Hessian

The intuitive picture behind the stability problem is that of the Morse theory [12]. The
Yang-Mills-Higgs energy functional, &, can be viewed as a “surface” above the (infinite dimensional)
“manifold of static field configurations” €. Static solutions (like monopoles) of the Yang-Mills-Higgs
field equations are critical points of & i.e. points where the gradient of & vanishes,

56 =0. (1.1)

These critical points can be local minima [or maxima], or saddle points and can also be degenerate,
meaning that it belongs to a submanifold with constant value of &. The theoretically possible
“landscapes” are, hence, as depicted on Figs. 1 and 2.

The nature of the critical point can be tested by considering small oscillations around it: for a
minimum, represented by the bottom of a “cup” (Fig. 1a), all oscillations would increase the energy.
Such a configuration is classically stable.

For a saddle point (Fig. 1b) some oscillations would increase the energy; these are the stable modes.
Some other ones would instead decrease the energy: there exist negative modes.

A critical point can also be degenerate, meaning that one may have zero modes, i.e. oscillations
which leave the energy unchanged, cf. Fig. 2.

The intuitive picture is that if one puts a ball into a critical point, it will roll down along energy-
reducing directions, — except when it is a (local) minimum and no such directions exist.

How can we determine the type of a critical point? In finite dimensions, we would use differential
calculus: a critical point is where all first partial derivatives vanish. Then the behaviour of oscillations
depends on the matrix of second derivatives called the Hessian,

8°e = [9;9;€]. (1.2)

52¢ defines a symmetric quadratic form which is positive or negative definite if it is a [local] minimum
or maximum, indefinite for a saddle point and degenerate if it has energy-preserving deformations.
All this can be detected by looking at the eigenvalues of §2€: are they all positive, or both positive or
negative, or do we have zero eigenvalues.
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