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a b s t r a c t

We introduce a framework for characterizing Matrix Product States
(MPS) and Projected Entangled Pair States (PEPS) in terms of sym-
metries. This allows us to understand how PEPS appear as ground
states of local Hamiltonians with finitely degenerate ground states
and to characterize the ground state subspace. Subsequently, we
apply our framework to show how the topological properties of
these ground states can be explained solely from the symmetry:
We prove that ground states are locally indistinguishable and can
be transformed into each other by acting on a restricted region,
we explain the origin of the topological entropy, and we discuss
how to renormalize these states based on their symmetries.
Finally, we show how the anyonic character of excitations can be
understood as a consequence of the underlying symmetries.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

What are the entanglement properties of quantum many-body states which characterize ground
states of Hamiltonians with local interactions? The answer seems to be ‘‘an area law”: the bipartite
entanglement between any region and its complement grows as the area separating them – and
not as their volume, as is the case for a random state (see [1] for a recent review). Moreover, particular
corrections to this scaling law are linked with critical points (logarithmic corrections) or topological
order (additive corrections). A rigorous general proof of the area law, however, could up to now only
be given for the case of one-dimensional systems [2], where an area law has been proven for all sys-
tems with an energy gap above the ground state, whereas the currently strongest result for two
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dimensions [3,4] requires a hypothesis on the eigenvalue distribution of the Hamiltonian. Surprisingly,
there is a completely general proof in arbitrary dimensions if instead, we consider the corresponding
quantity for thermal states [5], and similar links to topological order persist [6].

The area law can be taken as a guideline for designing classes of quantum states which allow to
faithfully approximate ground states of local Hamiltonians. There are several of these classes in the
literature: Matrix Product States (MPS) [7] and Projected Entangled Pair States (PEPS) [8] are most
directly motivated by the area law, but there are other approaches such as MERA (the Multi-Scale
Entanglement Renormalization Ansatz) [9] which e.g. is based on the scale invariance of critical sys-
tems; all these classes are summarized under the name of Tensor Network or Tensor Product States.
Though the main motivation to introduce them was numerical – they constitute variational ansatzes
over which one minimizes the energy of a target Hamiltonians and thus obtains an approximate
description of the ground state – they have turned out to be powerful tools for characterizing the
role of entanglement in quantum many-body systems, and thus helped to improve our understand-
ing of their physics.

In this paper, we are going to present a theoretical framework which allows us to understand how
MPS and PEPS appear as ground states of local Hamiltonians, and to characterize the properties of
their ground state subspace. This encompasses previously known results for MPS and particular in-
stances of PEPS, while simultaneously giving rise to a range of new phenomena, in particular topolog-
ical effects. Our work is motivated by the contrast between the rather complete understanding in one
and the rather sparse picture in two dimensions, and we will review what is known in the following.
We will thereby focus on analytical results, and refer the reader interested in numerical aspects
to [10].

1.1. Matrix Product States

Matrix Product States (MPS) [7] form a family of one-dimensional quantum states whose descrip-
tion is inherently local, in the sense that the degree to which two spins can be correlated is related to
their distance. The total amount of correlations across any cut is controlled by a parameter called the
bond dimension, such that increasing the bond dimension allows to grow the set of states described.
MPS have a long history, which was renewed in 1992 when two apparently independent papers ap-
peared: In [11], Fannes et al. generalized the AKLT construction of [12] by introducing the so-called
Finitely Correlated States, which in retrospect can be interpreted as MPS defined on an infinite chain;
in fact, this work layed the basis for our understanding of MPS and introduced many techniques which
later proved useful in characterizing MPS [13]. The other was [14], where White introduced the Den-
sity Matrix Renormalization Group (DMRG) algorithm, which can now be understood as a variational
algorithm over the set of MPS. In [15], MPS were explained from a quantum information point of view
by distributing ‘‘virtual” maximally entangled pairs between adjacent sites which can only be partially
accessed by acting on the physical system. This entanglement-based perspective has since then fos-
tered a wide variety of results.

1.1.1. The complexity of simulating one-dimensional systems
Motivated by the extreme success of DMRG, people investigated how hard or easy the problem of

approximating the ground state of a 1D local Hamiltonian (or simply its energy) was. The history of
this problem is full of interesting positive and negative results. A number of them was devoted to
prove that every ground state of a gapped 1D local Hamiltonian can be approximated by an MPS
[16,17]; this was finally proven by Hastings [2], justifying the use of MPS as the appropriate repre-
sentation of the state of one-dimensional spin systems. Very recently, also in the positive, it was
shown that dynamical programming could be used to find the best approximation to the ground
state of a one-dimensional system within the set of MPS with fixed bond dimension in a provably
efficient way [18,19]. On the other hand, in the negative it could be shown that finding the ground
state energy of Hamiltonians whose ground states are MPS with a bond dimension polynomial in
the system size is NP-hard [20]; this is based on a previous result of Aharonov et al. [21] proving
that finding the ground state energy of 1D Hamiltonians is QMA-complete (the quantum version
of NP-complete).

2154 N. Schuch et al. / Annals of Physics 325 (2010) 2153–2192



Download	English	Version:

https://daneshyari.com/en/article/1857547

Download	Persian	Version:

https://daneshyari.com/article/1857547

Daneshyari.com

https://daneshyari.com/en/article/1857547
https://daneshyari.com/article/1857547
https://daneshyari.com/

