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a b s t r a c t

Conventional quantum mechanics specifies the mathematical
properties of wavefunctions and relates them to physical experi-
ments by invoking the Born postulate. There is no known direct
connection between wavefunctions and any external physical
object. However, in the case of a two-dimensional spacetime there
is a completely classical context for wavefunctions where the con-
nection with an external reality is transparent and unambiguous.
By examining this case, we show how a classical stochastic process
assembles a Dirac wavefunction based solely on the detailed
counting of reversible paths. A direct comparison of how a related
process assembles a Probability Density Function reveals both how
and why PDFs and wavefunctions differ, including the ubiquitous
implication of complex numbers for the latter. The appearance of
wavefunctions in a context that is free of the complexities of quan-
tum mechanics suggests the study of such models may shed some
light on interpretive issues.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The empirical accuracy of quantum mechanics makes the theory unsurpassed in the history of sci-
ence. Despite this, there continue to be aspects of the theory that many scientists find controversial
[1,2]. The practically universal agreement that quantum mechanics provides a superb probability calculus
does not extend to questions involving the theory’s interpretation. Opinions on interpretive issues
cover a large spectrum.

Compare this situation with that of classical statistical mechanics and diffusion. In Table 1, six par-
tial differential equations are listed. In the center column are three classical PDEs that describe
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diffusive processes. Their solutions are typically probability density functions that are obtained by
counting paths with a random variable that detects the presence or absence of a path. The random var-
iable X in this case is Bernoulli:

X ¼
1 path link present
0 otherwise

�
ð1Þ

the stochastic version of an indicator function. Ultimately, the PDF solutions are continuum limits of
the expected values of sums of the Bernoulli random variable. That is:

Uðx; tÞ ¼ E
X

Path Ensemble

X

" #
: ð2Þ

The solutions can be treated as probability densities since the sums of the Bernoulli random variable
are non-negative and continuity of the paths allow U to be normalizable as a PDF in the continuum
limit. Indeed, (2) is an expression of the frequency-based picture of probability.

On the right of the table we see, respectively, the Dirac, Klein–Gordon and Schrödinger equations.
Each of these may be obtained from the classical equation in the same row by the conversion of a sin-
gle real constant to an imaginary constant. However, the solutions of these equations are wavefunc-
tions, not PDFs. The presence of the imaginary constant removes the solutions from the domain of
functions that would satisfy the properties of a PDF. Although the classical equations on the left are
ultimately phenomenological with a basis in kinetic theory, the equations on the right are regarded
as fundamental with no prior basis in an underlying microscopic model.

Comparing the two sets of equations, we understand the classical equations well enough to see
how they arise from elementary properties of small classical particles in random motion. If we ask
the question ‘‘What is a probability density function?” in the context of the solutions of these equa-
tions, we get a precise answer that is transparent with little need for ‘interpretation’.

The purpose of this article is to show that we can do the same for the quantum equations and asso-
ciated wavefunctions in a two-dimensional spacetime provided particle paths treat both dimensions
as spacelike in a manner that we shall describe shortly. The result is interesting in a number of ways.
The model we discuss provides a simple classical model that can, in principle, be used to quantita-
tively simulate single-particle quantum mechanics in one dimension. Hints that this may be extended
to three dimensions exist [3,4] and will be confirmed in a future work. In addition to this, wavefunc-
tions appear here as natural generalizations of PDFs to include counting processes for reversing paths.
As such they may be studied as stochastic processes independently of their context in quantum
mechanics. Finally, by comparing the classical and quantum contexts we anticipate that interpretative
issues about quantum mechanics [1] may be brought into sharp focus.

2. Kac’s model and PDFs

We begin by reviewing a version of Kac’s model for the Telegraph equations [5]. Consider walks
taking place on a lattice in the x—y plane. Particles traverse diagonal links on the lattice moving in

Table 1
Three sets of partial differential equations are compared. The center column contains phenomenological equations that have a
basis in kinetic theory. The PDF solutions are expected values of sums of the Bernoulli random variable. The right column contains
‘quantum’ equations obtained from the classical equations through a formal analytic continuation. We show that these equations
also have a kinetic theory basis in which the solutions are expected values of sums of the Anti-Bernoulli random variable.

Kinetic ‘picture’ Kac (Poisson) Feynman chessboard

Telegraph/Dirac @U
@t ¼ �rz

@U
@z þ arxU @W

@t ¼ �rz
@W
@z þ imrxW

Telegraph/KG @2 U
@t2 ¼ @2 U

@z2 þ a2U @2w
@t2 ¼ @2w

@z2 þ ðimÞ2w

Heat/Schrödinger @U
@t ¼ D @2 U

@x2
@w
@t ¼ iD @2w

@x2

Characteristic random variable Bernoulli X 2 f1; 0g Anti-Bernoulli Y 2 f1; 0;�1g
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