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Landau damping is a fundamental phenomenon in plasma physics, which also plays an 
important role in astrophysics, and sometimes under different names, in fluid dynamics, 
and other fields. Its theoretical discussion in the framework of the Vlasov equation 
often assumes that the reference stationary state is homogeneous in space. However, 
Landau damping around an inhomogeneous reference stationary state, a natural setting in 
astrophysics for instance, induces new mathematical difficulties and physical phenomena. 
The goal of this article is to provide an introduction to these problems and the questions 
they raise.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

L’amortissement Landau est fondamental en physique des plasmas, et joue, parfois sous 
un nom différent, un rôle important en astrophysique, en dynamique des fluides et dans 
d’autres domaines. Son traitement théorique à partir de l’équation de Vlasov suppose 
souvent que l’état stationnaire de référence est homogène en espace. Néanmoins, un état 
stationnaire non homogène en espace, un cadre naturel en astrophysique par exemple, 
induit des difficultés mathématiques et des phénomènes physiques nouveaux. Le but de cet 
article est de fournir une introduction à ces problèmes et aux questions qu’ils soulèvent.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Landau damping was first introduced almost 70 years ago [1], and it has since then been an active subject of research, 
whose importance goes far beyond its original realm of the Vlasov equation in plasma physics. The purpose of this article 
is to provide an introduction to the specificities of Landau damping close to a stationary state of the Vlasov equation which 
is not homogeneous in space: we describe in particular the various singularities governing the behavior of a perturbation 
(Table 1), and how they yield a two-step relaxation, see Fig. 3. This situation is in particular relevant for astrophysical 
applications of the Vlasov equation, but it is striking that a phenomenology similar to the one we will describe here is 
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encountered in very different physical systems: fluids described by Euler equation [2], Kuramoto model for oscillators syn-
chronization [3], sound propagation in bubbly fluids [4]. . . For self-consistency, we will first recall some basic facts about the 
Vlasov equation and standard Landau damping as it was first introduced in plasma physics, close to a homogeneous-in-space 
stationary state.

2. The Vlasov equation

When one tries to describe the positions and velocities of a large number of interacting particles by a phase space den-
sity, different situations may occur: if the interactions between particles are strong and rare, so that they involve only two 
particles each time, one expects a Boltzmann-like equation; if on the contrary one particle feels the effect of many others, 
the individual effect of each one being weak, one enters the realm of the Vlasov equation. This scaling limit, sometimes 
called mean-field limit, appears in many areas of physics, the two main examples being the particles in Coulombian inter-
action, and the particles in Newtonian interaction. In the plasma physics context, it was indeed introduced by Vlasov [5]; 
in the astrophysical context, the Vlasov equation is usually called “collisionless Boltzmann equation”. We write down the 
equation in its Hamiltonian form:

∂t f + { f ,h} = 0 (1)

where f is the phase space density, normalized to 1, { f , g} is the Poisson bracket

{ f , g} = 1

M
(∇x f · ∇v g − ∇v f · ∇x g) (2)

M is the particles’ mass and h(x, v, t) the Hamiltonian

h(x,v, t) = Mv2

2
+ φ(x, t) (3)

The potential φ(x, t) is created by f . For Coulomb or Newton interaction, φ is related to the spatial density ρ = ∫
f dv

through the Poisson equation:

�φ = Cρ (4)

where C = 4πG for the Newton interaction, with G the gravitational constant, and −4πe2/M for the Coulomb one. More 
generally, φ may be given by the convolution of the density ρ and a kernel K :

φ(x) =
∫

K (x − y)ρ(y)dy (5)

For instance, K is proportional to 1/|x| for Coulomb (resp. −1/|x| for Newton) interaction in 3D. Physically, the Vlasov 
equation is simply a transport equation, meaning that each particle moves in the field that all particles create. Hereafter, we 
set M = 1 for simplicity.

The convergence of the discrete dynamics of N particles towards the continuous Vlasov equation has been rigorously 
proved [6,7], but under the hypothesis that the kernel K is regular enough. In particular, this excludes the Coulomb and 
Newton cases!

3. Stationary states and their stability

The Vlasov equation (1) admits an infinite number of stationary states. Indeed, any function f = ϕ(h(x, v)) that depends 
on the phase space coordinates only through the Hamiltonian h is a stationary solution. An easy special case is provided 
by a function f that depends only on v2 (this implies that f is homogeneous in space), with a vanishing self-consistent 
potential. Space inhomogeneous stationary solutions, needed for instance to describe self-gravitating systems, are more 
difficult to construct, since one needs to solve the self-consistent equation (4) for the potential.

Studying the Vlasov dynamics close to a stationary solution proved a difficult endeavor, with surprises even at the linear 
level. When the linearized Vlasov operator has an eigenvalue with positive real part, the corresponding stationary state is 
clearly unstable. Furthermore, since the Vlasov equation has a Hamiltonian structure, it is easy to realize that the spectrum 
of the linearized operator is symmetric with respect to the imaginary axis; hence, if there is an eigenvalue with a negative 
real part, there is also one with a positive real part, and the corresponding stationary state is also unstable. Thus, the stable 
stationary states are only marginally stable, the spectrum being included in the imaginary axis. Yet, a perturbation around 
a stable stationary state may decay in some sense exponentially, with a well-defined rate: this surprising exponential decay 
for a time-reversible equation is the well-known Landau damping phenomenon, first described in 1946 [1]. In the following, 
we consider such damping of a perturbation δ f around a stable stationary state f0.
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