Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$ precursor and characterization of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode material for secondary lithium batteries

Longwei Liang, Ke Du*, Zhongdong Peng, Yanbing Cao, Jianguo Duan, Jianbing Jiang, Guorong Hu

School of Metallurgy and Environment, Central South University, Changsha, 410083, China

ARTICLE INFO

Article history: Received 15 November 2013 Received in revised form 18 February 2014 Accepted 18 February 2014 Available online 3 March 2014

Keywords: Lithium secondary batteries LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ Co-precipitation Electrochemical properties

ABSTRACT

LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ cathode materials were synthesized from spherical and homogeneous mixed metal hydroxide Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ which was prepared by co–precipitation method. The synthetic conditions of the metal hydroxide, such as pH, amount of chelating, stirring speed, temperature, etc. were studied in detail. The homogeneous and spherical Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor obtained in the optimized synthetic conditions had a high tap–density of 1.94 g cm^{-3} . A well–ordered layer–structured and spherical LiNi_{0.6}Co_{0.2}Mn_{0.2}Q₂ cathode material, with the tap–density of 2.59 g cm^{-3} , was fabricated by calcinating the as-prepared Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor and 5% excess LiOH·H₂O at 820 °C in the flowing oxygen. The crystal structure, morphology and electrochemical properties of the precursors and final products were investigated by using X–ray diffractometry, scanning electron microscopy, charge–discharge test and C–V method. In the voltage ranges of 2.8–4.3, 4.4 and 4.5 V, the initial discharge capacity retention ratios after 100 cycles were 94.3%, 90.7% and 85.4%. For elevated temperature operation (60 °C), the resulted capacity was as high as 196.9mAh g⁻¹ in the voltage range of 2.8–4.3 V and retained 89.7% after 100 cycles.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the drawbacks of LiCoO₂, such as high cost, toxicity of cobalt and so on, research and development of new cathode materials for lithium ion batteries are ongoing to replace it, for example, layered LiNiO₂[1,2], LiMnO₂[3,4] and spinel LiMn₂O₄[5,6]. However, stoichiometric LiNiO2 is difficult to synthesize and also known for its poor cycling characteristic resulted from its two major material defects: its tendency to non-stoichiometry caused by Li/Ni cations displacement during the synthesis process and its structural instability during lithium intercalation/de-intercalation process[7-9]. LiMnO₂ with layered structure has a high theoretical specific capacity. However, during the process of charging and discharging, the layed structure of LiMnO₂ easily changes to the spinel structure, resulting in fast attenuation of capacity[10]. LiMn₂O₄ presents smaller capacity, and significant capacity fading during cycling at elevated temperature due to manganese dissolution, electrolyte decomposition and Jahn–Teller distortion[11,12].

http://dx.doi.org/10.1016/j.electacta.2014.02.100 0013-4686/© 2014 Elsevier Ltd. All rights reserved. Therefore, various approaches such as partial replacement of nickel and manganese by transition metals, surface coated, optimizing preparation methods and conditions are adopted to improve their performance[4,13–16].

 $LiNi_{1-x-y}Co_xMn_yO_2$ series, which integrate features of $LiCoO_2$, LiNiO₂ and LiMnO₂, have attracted more attentions for their high capacity, low cost, good cycling stability and safety[17–22]. In the series, Ni provides a high capacity but poor thermal stability, while Mn maintains an excellent cycling performance and safety. And Co offers increased electronic conductivity resulting in an excellent rate capability. Now LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ and LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ have been commercialized and used widely in commercial lithiumion batteries. However, the capacity of these materials are not high enough(150–160 mAh g^{-1})[23,24]. Various methods have been applied to synthesize LiNi0.6Co0.2Mn0.2O2 cathode materials, such as hydroxide co-precipitation method[25-30], carbonate co-precipitation method[31,32], combustion method[33], solidstate method[34-36] and spray-drying method[34,37,38]. Cao et al. [25] prepared LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ by co-precipitation method that delivers an initial discharge capacity of 175.3 mAh g⁻¹ in the voltage of 2.75–4.3 V at 1 C rate, and over 151.2 mAh g^{-1} after 70 cycles. However, it dropped dramatically in the following cycles.

CrossMark

^{*} Corresponding author. Tel.: +86 13787788450. E-mail addresses: dukeben76@yahoo.com.cn, csulllw198611@163.com (K. Du).

Li et al. [26] prepared LiNi_{0.6}Mn_{0.4-x}Co_xO₂(x = 0.05, 0.1, 0.15, 0.2) and found the sample with x = 0.2 delivered an initial discharge capacities of 170–175 mAh g⁻¹ and only 71.5% was remained after 50 cycles at 30 mAg^{-1} in the voltage of 2.5–4.3 V. Liao et al. [27] synthesized $LiNi_{0.6}Co_{0.4-x}Mn_xO_2(x=0.15, 0.2, 0.25)$ materials by calcining a mixture of $Ni_{0.6}Co_{0.4-x}Mn_x(OH)_2$ and Li_2CO_3 in flowing oxygen atmosphere. The samples for x = 0.2 calcined at 940 °C delivered an initial discharge capacity of 175.6 mAh g⁻¹ and a capacity retention of 96.6% after 20 cycles at 30 mAg^{-1} in the voltage of 3.0-4.3 V. Chen et al. [28] prepared $LiCo_xMn_yNi_{1-x-y}O_2(0 \le x \le 0.3,$ and y = 2) by heating a mixture of $Co_x Mn_y Ni_{1-x-y}(OH)_2$ and $Li_2 CO_3$ at 850-900 °C for 24 h in air. They reported that LiCo_{0.1}Mn_{0.2}Ni_{0.7}O₂ and LiCo_{0.2}Mn_{0.2}Ni_{0.6}O₂ had the best electrochemical characteristics and their initial discharge capacities attained 150 mAh g⁻¹ at the current of 0.4 mA cm⁻² between 3.0 and 4.3 V and no cycle performance was mentioned in this paper. Yue et al. [30] have reported that LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ prepared by mixture of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$ and LiOH·H₂O, preheated at 500 °C for 5 h and then heated at 800 °C for 15 h in air, could deliver an initial discharge capacity of 169.8 mAh g^{-1} and 148.9 mAh g^{-1} at 0.1, 1*C* rate, respectively, in the voltage of 2.8-4.3 V, with only 89.2% of the initial discharge capacity was remained after 50 cycles at 1 C rate.

So it can be found that the main problems of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ cathode material are low capacity at high rate and poor cycle performance. And few group studied the preparation conditions systematically and paid attention to the tap–density and particle morphology of Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor. In addition, less attention has been paid to the long life cyclicity at high current rates and performance at high temperature. In this research, the optimum conditions for preparation of spherical Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ were studied in detail, such as pH, the amount of chelating agent, stirring speed and temperature, etc. The structural properties, morphology, electrochemical properties of LiNi_{0.6}Co_{0.2}Mn0.2O₂ powders were also investigated thoroughly.

2. Experimental

Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor was synthesized by the co-precipitation method. NiSO₄·6H₂O, CoSO₄·7H₂O and MnSO₄·H₂O were used as starting materials and were dissolved in distilled water in a molar ratio of Ni²⁺: Co²⁺: Mn²⁺ = 6: 2: 2. A 1.5 M aqueous solution of transition metal sulfates was slowly pumped into a continuous stirred tank reactor (capacity 10 L) under nitrogen atmosphere. At the same time, a 4 M NaOH solution(aq) and appropriate amount of NH₄OH solution(aq) as chelating agent were also separately pumped into the reactor. After reaction, the precipitate was filtered and washed several times to remove the residual ions (Na⁺, SO₄²⁻ or other ions). The precipitate was then dried at 80 °C overnight. The concentration of the solution, pH,

Table	1
-------	---

Prep	aration	conditions	of Ni ₀	6C00.2	√In _{0.2} ($(OH)_2$	powd	ers
------	---------	------------	--------------------	--------	----------------------	----------	------	-----

amount of NH₄OH, stirring speed and temperature in the reactor were carefully controlled.

The obtained precursor of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_2$ and 5% excess LiOH·H₂O were mixed thoroughly in an agate mortar. The mixture was first calcined at 550 °C for 4 h in air, and then heated at 780, 820 and 860 °C for 12 h in flowing oxygen atmosphere to obtain $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ powders.

The synthesized compounds were characterized by using X–Ray diffraction (XRD)(Riguku θ/θ diffractometer with Cu K α radiation(r = 1.54056 Å). XRD datas were obtained at $2\theta = 10-80^{\circ}$, with a scan speed of 2° ·min⁻¹. The morphological features and particle sizes were observed by scanning electron microscope equipped with EDXS energy disperse X-ray spectrometer(SEM, Hitachi X–650). The chemical compositions of the resulting compounds were analyzed by atomic absorption spectroscopy (AA spectrophotometer, Zhimadu 6650).

The charge/discharge tests were carried out by assembling 2025–type coin cells with a lithium metal anode, working cathode and Celgard 2400 microporous membrane. The working cathode was fabricated by 80 wt% LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂, 10 wt% acetylene black and 10 wt% PVDF binder. A $1 \mod L^{-1}$ solution of LiPF₆ dissolved in ethylene carbonate (EC)/dimethyl carbonate(DMC)(1:1,v/v) was employed as the electrolyte. The charge–discharge tests were set to be charged and discharged between 2.8 and 4.3 V at 0.1 C rate in the first 2 cycles and then at 1 C rate in the following 100 cycles at 25°C or 60°C. Cyclic voltammograms measurements were done by a Solartron 1287 electrochemical interface between 2.8 and 4.5 V at a scan rate of 0.1 mV s⁻¹.

3. Results and discussion

3.1. Optimization of synthetic conditions of Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂

The tap–density of the powders is closely related to the powders' particle morphology, particle size and particle size distribution, etc. The powders composed of spherical particles have higher tap–density than the powders composed of irregular particles. The spherical Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor with a very homogeneous distribution of Ni²⁺, Co²⁺ and Mn²⁺ on the atomic scale can also be synthesized via the co–precipitation method[23,39]. Additional, it is easier to synthesize LiNi_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor because the layered structure of LiNi_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ precursor because the layered structure of LiNi_{0.6}Co_{0.2}Mn_{0.2}(OH)₂ particles were studied ordinally. Eleven samples were prepared at different pH, concentration of NH₄OH, stirring speed and temperature. P_i(i = 1, 2, 3, ..., 11) was used to

Sample	рН	Concentration of NH ₄ OH(mol L ⁻¹)	Stirring speed(rpm)	Temperature(°C)	Tap-density (g cm ⁻³)	
					Ni _{0.6} Co _{0.2} Mn _{0.2} (OH) ₂	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂
P1	11.2	1.0	600	50	1.65	2.29
P2	11.5	1.0	600	50	1.47	2.08
РЗ	11.8	1.0	600	50	1.08	1.62
P4	11.2	0.3	600	50	1.29	1.78
P5	11.2	0.6	600	50	1.76	2.37
P6	11.2	1.0	600	50	1.66	2.27
P7	11.2	0.6	400	50	1.48	2.05
P8	11.2	0.6	600	50	1.78	2.39
P9	11.2	0.6	800	50	1.91	2.55
P10	11.2	0.6	800	55	1.94	2.59
P11	11.2	0.6	800	60	1.89	2.52

Download English Version:

https://daneshyari.com/en/article/185829

Download Persian Version:

https://daneshyari.com/article/185829

Daneshyari.com