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If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for 
the common good? Recent research indicates that a comprehensive answer to such questions requires 
that we look beyond the individual and focus on the collective behavior that emerges as a result of the 
interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and 
cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. 
Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase 
transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary 
outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics 
systems, interactions among humans often involve group interactions, and they also involve a larger 
number of possible states even for the most simplified description of reality. Here we briefly review 
research done in the realm of the public goods game, and we outline future research directions with an 
emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium 
statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer 
better social systems and develop more efficient policies for a sustainable and better future.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The human race is remarkable in many ways. We are cham-
pions of cooperation [1]. We sacrifice personal benefits for the 
common good, we work together to achieve what we are un-
able to achieve alone, we are compassionate, and we are social. 
And through this cooperation, we have had astonishing evolution-
ary success. We have conquered our planet, and today there is 
an abundance of technological breakthroughs and innovations that 
make our lives better. At the same time, our societies are home to 
millions that live on the edge of existence. We deny people shel-
ter, we deny people food, and we deny people their survival. We 
still need to learn how to cooperate better with one another. The 
problem, however, is that to cooperate more or better, or even to 
cooperate at all, is in many ways unnatural. Cooperation is costly, 
and exercising it can weigh heavily on individual wellbeing and 
prosperity. If only the fittest survive, why should one perform an 
altruistic act that is costly to perform but benefits another? Why 
should we care for and contribute to the public good if freerid-
ers can enjoy the same benefits for free? Since intact cooperation 
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forms the bedrock of our efforts for a sustainable and better fu-
ture, understanding cooperative behavior in human societies has 
been declared as one of the grand scientific challenges of the 21st 
century [2].

In the past, Hamilton’s kin selection theory has been applied 
prolifically to solve the puzzle of cooperation among simpler or-
ganisms [3], resting on the fact that by helping a close relative to 
reproduce still allows indirect passing of the genes to the next gen-
eration. Ants and bees, for example, are famous for giving up their 
own reproductive potential to support that of the queen [4]. Birds 
do cooperative breeding that prompts allomaternal behavior where 
helpers take care for the offspring of others [5]. Microorganisms 
also cooperate with each other by sharing resources and joining 
together to form biofilms [6]. But in nature cooperation is com-
mon not only between relatives. And this seems to be all the more 
true the more intelligent an organism is. Higher mammals, and hu-
mans in particular, are in this respect at the top of the complexity 
pyramid where one can distinguish a vast variety of prosocial and 
antisocial behavior.

Accordingly, many other mechanisms have been identified that 
promote cooperation, most famous being direct and indirect reci-
procity as well as group selection [7]. Network reciprocity [8] has 
recently also attracted considerable attention in the physics com-
munity, as it became clear that methods of nonequilibrium statis-
tical physics can inform relevantly on the outcome of evolutionary 
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games in structured populations [9–13]. While the basic idea be-
hind network reciprocity is simple — cooperators do better if they 
are surrounded by other cooperators — the manifestation of this 
fact and the phase transitions leading to it depend sensitively on 
the structure of the interaction network and the type of interac-
tions, as well as on the number and type of competing strategies.

While the infusion of statistical physics to this avenue of re-
search is still a relatively recent development, evolutionary game 
theory [14] is long established as the theory of choice for study-
ing the evolution of cooperation among selfish individuals, in-
cluding humans [15]. Competing strategies vie for survival and 
reproduction through the maximization of their utilities, which 
are traditionally assumed to be payoffs that are determined by 
the definition of the contested game. The most common assump-
tion underlying the evolution in structured populations has been 
that the more successful strategies are imitated and thus spread 
based on their success in accruing the highest payoffs. Mutation 
has also been considered prominently, in that it can reintroduce 
variation into the population or represent cultural evolution and 
social learning, in which people imitate those with higher payoffs 
and sometimes experiment with new strategies. Evolutionary dy-
namics based on these basic principles has been considered as the 
main driving force of evolution, reflecting the individual struggle 
for success and the pressure of natural selection.

Undoubtedly, traditional evolutionary game theory, as briefly 
outlined above, has provided fundamental models and methods 
that enable us to study the evolution of cooperation, and research 
along these lines continues to provide important proof-of-principle 
models that guide and inspire future research. But the complexity 
of such systems also requires methods of nonequilibrium statis-
tical physics be used to better understand cooperation in human 
societies, and to reveal the many hidden mechanisms that pro-
mote it. In the continuation, we first present the public goods 
game on the square lattice as the null model of human cooper-
ation [16]. We then proceed with representative extensions of the 
game involving punishment [17] and correlated positive and nega-
tive reciprocity [18], which deliver fascinating examples of phase 
transitions in the realm of this research. We conclude with an 
overview of important progress made in related fields, and we 
outline possible directions for future research in the realm of sta-
tistical physics of evolutionary games.

2. The null model

The public goods game is simple and intuitive. In a group of 
players, each one can decide whether to cooperate or defect. Co-
operators contribute c = 1 to the common pool, while defectors 
contribute nothing. The sum of all contributions is multiplied by 
a multiplication factor r > 1, which takes into account synergistic 
effects of cooperation. In particular, there is an added value to a 
joint effort that is often more than just the sum of individual con-
tributions. After the multiplication, the resulting amount of public 
goods is divided equally amongst all group member, irrespective 
of their strategy. In a group g containing G players the resulting 
payoffs are thus

�
g
C = r(NC + 1)/G − 1 (1)

�
g
D = rNC /G, (2)

where NC is the number of cooperators around the player for 
which the payoff is calculated. Evidently, the payoff of a defec-
tor is always larger than the payoff of a cooperator, if only r < G . 
With a single parameter, the public goods game hence captures the 
essence of a social dilemma in that defection yields highest short-
term individual payoffs, while cooperation is optimal for the group, 

and in fact for the society as a whole. If nobody cooperates public 
goods vanish and we have the tragedy of the commons [19].

In a well-mixed population, where groups are formed by select-
ing players uniformly at random, r = G is a threshold that marks 
the transition between defection and cooperation. If players imitate 
strategies of their neighbors with a higher payoff, then for r < G
everybody defects, while for r > G everybody in the population 
cooperates. Interactions among humans, however, are seldom ran-
dom, and it is therefore important for the null model to take this 
into account. The square lattice is among the simplest of networks 
that one can consider. Notably, previous research has shown that 
for games governed by group interactions using the square lattice 
suffices to reveal all feasible evolutionary outcomes, and moreover, 
that these are qualitatively independent of the details of the inter-
action structure [11].

For simplicity but without loss of generality, let the public 
goods game thus be staged on a square lattice with periodic 
boundary conditions where L2 players are arranged into overlap-
ping groups of size G = 5 such that everyone is connected to 
its G − 1 nearest neighbors. The microscopic dynamics involves 
the following elementary steps. First, a randomly selected player 
x with strategy sx plays the public goods game with its G − 1
partners as a member of all the g = 1, . . . , G groups where it is 
member, whereby its overall payoff �sx is thus the sum of all 
the payoffs �g

sx acquired in each individual group. Next, player x
chooses one of its nearest neighbors at random, and the chosen 
co-player y also acquires its payoff �sy in the same way. Finally, 
player y imitates the strategy of player x with a probability given 
by the Fermi function

W (sx → sy) = 1

1 + exp[(�sy − �sx)/K ] , (3)

where K quantifies the uncertainty by strategy adoptions [16]. In 
the K → 0 limit, player y copies the strategy of player x if and 
only if �sx > �sy . Conversely, in the K → ∞ limit, payoffs cease
to matter and strategies change as per flip of a coin. Between these 
two extremes players with a higher payoff will be readily imitated, 
although under-performing strategies may also be adopted, for ex-
ample due to errors in the decision making, imperfect information, 
and external influences that may adversely affect the evaluation 
of an opponent. Repeating these elementary steps L2 times con-
stitutes one full Monte Carlo step (MCS), which gives a chance to 
every player to change its strategy once on average.

This null model — the spatial public goods game — has been 
studied in detail in [16], where it was shown that for K = 0.5
cooperators survive only if r > 3.74, and they are able to defeat 
defectors completely for r > 5.49. Both the D → C + D and the 
C + D → D phase transition are continuous. Subsequently, the im-
pact of critical mass [20], i.e., the evolution of cooperation under 
the assumption that the collective benefits of group membership 
can only be harvested if the fraction of cooperators within the 
group exceeds a threshold value, and the effects of different group 
sizes [21], have also been studied in the realm of this two-strategy 
spatial public goods game.

In general, it is important that in structured populations, due 
to network reciprocity, cooperators are able to survive at multipli-
cation factors that are well below the r = G limit that applies to 
well-mixed populations. The r > 3.74 threshold for cooperators to 
survive on the square lattice can be considered as a benchmark 
value, below and above which we have harsh and lenient condi-
tions for the evolution of public cooperation, respectively.

3. Public goods game with punishment

Despite ample cooperation in human societies [1], and despite 
our favorable predispositions for prosocial behavior that are likely 
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