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In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated 
by computing the unstable regions in parameter space consisting of parametric excitation amplitude and 
frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. 
A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, 
particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by 
comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, 
traveling ILMs could be generated by parametric excitation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Intrinsic localized modes (ILMs), which are spatially localized 
vibrations in nonlinear lattices, have attracted much attention 
since they were first predicted in an anharmonic lattice by Siev-
ers and Takeno [1]. At present, ILMs are employed in diverse 
physical and artificial systems [2]. Micro-cantilever arrays fabri-
cated from microelectromechanical system (MEMS) technology are 
among the artificial nonlinear lattices designed to have ILMs [3,4]. 
The observation and manipulation of ILMs in micro-cantilever ar-
rays triggered application-based research. The keys to realizing 
ILM applications are constructing, controlling, and deconstructing 
ILMs as desired. It has already been shown that pinned ILMs in 
micro-cantilever arrays can be manipulated in steps [4]. In addi-
tion, moving ILMs, which travel with almost constant speeds, have 
been generated from pinned ILMs by adjusting their driving fre-
quencies [5]. Thus, ILMs can be controlled without spatial decay. In 
addition, moving ILMs are identified in NaCl crystals by Dmitriev 
et al. [6]. It strongly suggests that the ILM will play a crucial role 
in nanotechnology.

In our previous research, another method for manipulating ILMs 
in micro-cantilever arrays was proposed, called capture and release 
manipulation [7]. In this method, a nonlinear coupling coefficient 
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is varied to manipulate the ILM stability. An initially stable ILM 
begins to wander the lattice as it becomes unstable. The wander-
ing ILM can be pinned again if the adjusting parameter is returned 
to its initial value at the appropriate time. The stability change 
used for the manipulation is due to the saddle-node bifurcations of 
ILMs [8]. Another means of adjusting ILM stability is through para-
metric excitation. For discrete nonlinear Schrödinger equation, it 
has been shown that the stability of ILM, which is also called dis-
crete soliton, is changed with respect to the strength of parametric 
excitation [9,10]. Kenig et al. have also shown that the creation, 
stability, and interaction of ILMs in a parametrically driven cou-
pled MEMS resonators having nonlinear damping [11]. Cuevas et 
al. demonstrated that the stability of an ILM in a forced-damped 
array of coupled pendula changed when the parametric excita-
tion amplitude was varied [12]. They also succeeded in creating 
a traveling ILM in the same manner. Therefore, it is important to 
understand how ILMs depend upon temporary varied parameters 
for realization of control of ILMs.

The objective of this study was to generate a traveling ILM us-
ing parametric excitation. Unstable regions in which the ILMs lost 
stability and began to fluctuate along the lattice were investigated 
with respect to parametric excitation frequency and amplitude for 
the three different types of micro-cantilever arrays. The unsta-
ble regions were compared with those in the Mathieu differential 
equation for confirming the fact that the destabilization is caused 
by the parametric resonance of ILM.
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2. Model

Intrinsic localized modes in a coupled cantilever array can be 
analyzed as those in a nonlinear coupled oscillator with a viscous 
damping and an external driver [3,4]. Although the effect of the 
damping and the driving force to the motion of cantilevers should 
be considered for more precise analysis [13,14], we focus on a 
simple coupled nonlinear oscillator array, in which there are non-
linearities in both the on-site and inter-site potentials, because the 
viscous damping will be sufficiently small as long as the coupled 
cantilever array is placed in high vacuum environment [3,4]. It can 
be expected that the behavior of ILM will be qualitatively similar 
to that in the real system [2,15]. The equation of motion without 
the damping and the driving force is given by

ün = −un − α(un − un+1) − α(un − un−1)

− β1u3
n − β2(un − un+1)

3 − β2(un − un−1)
3

(n = 1, 2, · · · , N),

(1)

where un denotes the displacement of the nth cantilever from the 
equilibrium position and all of the coefficients are assumed to be 
positive. In this study, the linear coupling coefficient α was fixed at 
0.1 and the total number of cantilever is set at N = 8. The bound-
ary condition is assumed to be the periodic boundary condition 
for eliminating the effect of breaking the translational symme-
try [8]. The ratio of the nonlinear coupling coefficient β2 to the 
on-site nonlinearity β1 plays a crucial role in ILM stability [7,8]. 
If βr = β2/β1 is chosen at zero, the equation of motion coincides 
with a nonlinear Klein–Gordon (NKG)-type lattice. Nonlinear os-
cillators which have cubic nonlinearity in the restoring force are 
linearly coupled. In this lattice, site-centered modes are stable, 
whereas bond-centered modes are unstable [8]. In contrast, Eq. (1)
becomes a Fermi–Pasta–Ulam (FPU)-like lattice when the ratio in-
creases toward infinity, namely, when βr → ∞. Linear oscillators 
are nonlinearly coupled. For the FPU-like lattice, the site-centered 
modes are unstable, whereas the bond-centered modes are sta-
ble [8]. Equation (1) switches these two types of lattices to around 
βr = 0.5453 if the total energy and the number of oscillators are 
set at 2.5 and 8, respectively [8]. In this investigation, three lattice 
types were studied: a NKG lattice (β1 = 1, β2 = 0), FPU-like lattice 
(β1 = 0, β2 = 1), and mixed lattice (β1 = 2, β2 = 1).

3. Stability and Floquet multipliers

Two ILM types are shown in Fig. 1(a). The left side is referred 
to as the site-centered or Sievers–Takeno (ST) mode, whereas the 
other is called bond-centered or Page (P) mode [16]. Since ILMs 
are time-periodic solutions, they can be treated as a fixed point 
of a Poincaré map i.e. x∗ = P (x∗). A small perturbation to the fixed 
point gives a linearized equation yk+1 = D P (x∗)yk , where k is pos-
itive integer and D P (x∗) is Jacobian matrix at x∗ . Therefore the 
stability of the fixed point, namely, the ILM can be determined by 
eigenvalues of the Jacobian matrix, which are called characteristic 
or Floquet multipliers [2]. In the left side of Fig. 1(b), the character-
istic multipliers of a stable ST mode in a mixed lattice are shown. 
All of the multipliers are on the unit circle. In this case, the P mode 
is unstable (see the right side of Fig. 1(b)). It is known that their 
stability are flipped when βr � 0.545358 for H = 2.5 [8], as well 
as in the nonlinear Schrödinger equation [17].

The characteristic multipliers can be classified based on the 
spatial distributions of their corresponding eigenvectors. For the 
case shown in Fig. 1(b), ρ1, ρ2, ρ3, and ρ4 have spatially localized 
eigenvectors, whereas the other multipliers have spatially extended 
eigenvectors. Since Eq. (1) is a Hamiltonian system, two charac-
teristic multipliers are located at +1 in the complex plane. These 

multipliers are considered the phase and growth modes [2,18]. Per-
turbing the phase mode changes the overall ILM phase, and the 
growth mode changes the total energy of the ILM. Another eigen-
value having the spatially localized eigenvector ρ3 is called the 
pinning or translational mode [2,18]. The spatial symmetry of any 
particular eigenvector is opposite that of the ILM. Thus, a perturba-
tion along the translational mode changes the ILM position along 
the lattice.

If a fixed point of a Poincaré map corresponding an ILM in 
the original equation is perturbed along an eigenvector pρi , the 
perturbed solution yk = x∗ + εpρi will oscillate with frequency 
f i = argρi/2π . If f i is a rational number m/n, the perturbed solu-
tion returns to the original position by mapping n times, namely, 
yk = D P (x∗)n yk . In original equation, the perturbation will cause 
a small fluctuation around the trajectory of ILM. Since the fre-
quency of the ILM is ωILM, the fluctuation will have the frequency 
of nωILM. Therefore, frequency of an oscillation caused by a small 
perturbation along the eigenspace spanned by ρi and ρ̄i is given 
by

Ωi = argρi

2π
ωILM, (2)

where ωILM is the angular frequency of the ILM. If the fluctuation 
is along the translational mode, the perturbed ILM will oscillate 
with an angular frequency Ω3. Therefore, the motion of the ILM 
fluctuation can be written as approximately

ξ̈ = −Ω2
3 ξ, (3)

where ξ represents the displacement from the original position of 
the ILM, XILM. Therefore, the absolute position of the fluctuating 
ILM is given by X = ξ + XILM, where XILM ∈ [1/2, N + 1/2) is an 
integer for ST mode or a half-integer for P mode.

4. Parametric resonance

The frequencies of the fluctuations depend on the coefficient β2
as shown in Fig. 2, that is Ωi = Ωi(β2). Let β2 be a time-periodic 
function β2(t) = β2 + ε sinνt , where ε is positive and sufficiently 
small. By transforming the time variable t → t/ν and considering 
the first order of ε of a Taylor expansion of Eq. (3), Eq. (3) becomes 
the Mathieu equation:

ξ̈ = − 1

ν2
Ω2

3 (β2 + ε sin t)ξ

∼ − 1

ν2

(
Ω2

3 (β2) + ∂Ω2
3 (β2)

∂β2
ε sin t + · · ·

)
ξ

∼ −
(

Ω3

ν

)2 (
1 + 2

Ω3

∂Ω3

∂β2
ε sin t

)
ξ

= −ω′ 2(1 + ε′ sin t)ξ. (4)

The amplitude of the parametric excitation ε′ is proportional to 
2

Ω3

∂Ω3

∂β2
. Thus, parametric excitation is more effective when Ω3

becomes small and steep, i.e. near the bifurcation point.
In the Mathieu equation, the stable equilibrium point ξ = 0

loses its stability if ω′ is close to or equal to an integer and half-
integer and ε′ is greater than zero. In this situation, a standing ILM 
will become unstable and may become mobile. To investigate the 
region of ILM stability loss, the ILM position can be defined using 
the lattice energy distribution [19]:

h =
N∑

n=1

{(
1

2
u̇2

n + 1

2
u2

n + β1

4
u4

n

)
ei 2π

N n

+
(

α

2
(un − un−1)

2 + β2

4
(un − un−1)

4
)

ei 2π
N (n+ 1

2 )

}
,

(5)
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