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We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with 
light-induced resonant inter-band transition. We applied it to graphene to study the band features caused 
by the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), 
and circularly polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is 
linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in the pseudo gaps, 
and if it is in the lateral direction of armchair ribbons, curved edge bands can be found. For the circularly 
polarized cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands 
induced by the circularly polarized light are helical and those by linearly polarized light are topologically 
trivial ones. The Chern number of the Floquet band, which reflects the number of pairs of helical edge 
bands in graphene ribbons, can be reduced into the winding number at resonance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has drawn much attention since it was discovered in 
the laboratory [1,2]. Graphene has a number of interesting phys-
ical properties and has a great potential for application. Pristine 
graphene is a gapless Dirac material, while the energy gap is 
needed for the fabrication of switching devices. There are a few 
causes, such as staggered substrate influence [3–5] and the spin–
orbit coupling [6–8], to open a gap on the spectrum of graphene. 
The latter is more attractive because it makes graphene a topologic 
insulator and leads to helical edge bands which are topologically 
protected by the time-reversal symmetry [6]. However, the spin–
orbit coupling in graphene is proven to be too weak to detect [2].
Recent researches implied that the time dependent driving may 
have the similar effects as the spin–orbit coupling in graphene: it 
generates gaps and turns a normal material into a special topo-
logic insulator called Floquet topologic insulator [9–13]. Besides in 
condensed matters, the interest of the novel effects of driving is 
increasing in cold atoms [14–17] and other fields. Recently, the Flo-
quet topologic phase was realized in a photonic crystal [18], which 
indicated the validity of the theoretical prediction. Light irradia-
tion is an important periodically driving source, and the irradiation 
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induced energy gaps in a topological insulator were observed re-
cently [19]. These experiments provide the probability to generate 
gaps and change the topologic property of graphene by light irra-
diation [20–23].

Light irradiation generates energy gaps in graphene by two 
mechanisms. First, under the affection of light, the electron near 
the Dirac point emits a photon and re-absorbs it to renormalize the 
band structure, and a gap is generated at the Dirac point to sepa-
rate the conduction and valence bands [24–27], which is the effect 
of second order perturbation. Second, light induces resonant tran-
sition between conduction band and valence band states, and pro-
duces dynamic gaps on the quasi-energy spectrum at E = ±h̄ω/2, 
where ω is the angular frequency of light [28–31]. The latter is 
more attractive because it is a first order process.

Typically, periodically driven system is treated in frequency 
space [32–34], also called Floquet space. The whole space is di-
vided into infinite subspaces according to the number of photons 
absorbed and emitted. The system is solved by truncating the Flo-
quet space at a finite dimension. For the weak driven cases, the 
main physics is determined by the one-photon processes that can 
be well understood. It is possible to develop a short theory to han-
dle the driven system by only taking the one-photon processes into 
account. The theory should simplify the calculation, reproduce the 
results of other more complicated methods, and more importantly, 
give more insight on the physics of driven systems.
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In this paper, we proposed a minimal model to describe the 
Floquet band structure of two-dimensional materials with light-
induced resonant inter-band transition and applied the theory to 
graphene. Linearly polarized light induces pseudo gaps, and circu-
lar polarized light causes real gaps on the Floquet quasi-energy 
spectrum of graphene. For the circular polarization cases, edge 
bands arise in the gaps and intersect for both zigzag and armchair 
ribbons. Interestingly, linear polarized illumination can also lead to 
edge bands, depending on the type of ribbon and the polarization 
orientation. If the polarization is longitudinal along zigzag ribbons, 
flat edge bands appear in the pseudo gaps, and if it is in the lat-
eral direction of armchair ribbons, curved edge bands arise. The 
topologic property of the Floquet bands is reflected by the Chern 
number, and we found it can be reduced into the winding num-
ber at resonance. The edge bands induced by the circular polarized 
light are helical and those by linear polarized light are topologi-
cally trivial ones.

2. Floquet theory of inter-band optic transition

We consider a two-band system consisting of one conduction 
band and one valence band. When a laser normally irradiates 
on the graphene sheet, a time-dependent vector potential A(t) =
A cosωt is introduced, where A is the amplitude vector of A, ω is 
the angular frequency, and t is the time. If the system is weakly 
perturbed, in the frame of A · p approximation, the time-dependent 
Hamiltonian reads

H0(t) = Hk −A(t) · p, (1)

where Hk is the Hamiltonian without light irradiating, and p is 
the momentum operator. The eigenvalues of Hk are the conduction 
and valence band energies denoted by εc and εv , and the corre-
sponding eigenstates are |c〉 and |v〉, respectively. In Eq. (1), the 
electron charge e and the electron effective mass m are set to be 1. 
In basis of |c〉 and |v〉, the time-dependent Hamiltonian (rotating 
wave approximate is used) can be written as

H(t) =
(

εc
1
2 g∗e−iωt

1
2 geiωt εv

)
, (2)

where g is the transition element defined by

g = −A · 〈v| p |c〉. (3)

The time-dependent Schrödinger equation i∂tψ = H(t)ψ , in which 
the h̄ is set to be 1, can be reduced into a static one Hψ = Eψ by 
introducing the unitary transformation

U =
(

e−i(εc−δ/2)t 0

0 e−i(εv+δ/2)t

)
, (4)

where δ = (εc − εv) − ω is the detune. The static Hamiltonian is 
obtained by

H = U HU+ + iU
∂U+

∂t
= 1

2

(
δ g∗

g −δ

)
. (5)

Solving the eigen-problem of the static Hamiltonian, we have the 
eigen-pairs

E± = ±1

2
D, ψ± = 1√

2

( √| ± 1 + δ/D|
±eiθ√| ± 1 − δ/D|

)
, (6)

where D = √|g|2 + δ2 and θ = arg(g) is the complex angle. Go 
back to the basis of |c〉 and |v〉, and we have the quantum states 
satisfying the time-dependent Schrödinger equation for H(t),

Uψ±e−iE±t . (7)

According to the Floquet theorem, the solutions of time-
dependent Schrödinger equation for periodic time-dependent Ham-
iltonian must be of the form ψ = e−iE F tψ F , where E F is time 
independent and ψ F is of the same period as H(t). The quan-
tities E F and ψ F are called as Floquet energy and Floquet state 
respectively, which are the solution pair of the Floquet equation 
H F ψ F = E F ψ F , where H F = H(t) − i∂t is the Floquet operator. 
One can verify that, if E F and ψ F satisfy the Floquet equation, 
E F + nω and ψ F einωt for arbitrary integer n are also a Floquet 
pair. To eliminate the non-uniqueness, we choose proper n so that 
the Floquet energies are recovered to the conduction and valence 
band energies for infinitesimal weak driven intensity. After doing 
so, we have the Floquet energies

E F± = 1

2
(εc + εv) ± 1

2
(ηD + ω) , (8)

where η is the sign of δ. The corresponding Floquet states are

ψ F+ = aF |c〉 + bF |v〉eiωt,

ψ F− = b∗
F |c〉e−iωt − aF |v〉, (9)

where the coefficients aF and bF are defined as

aF = 1√
2

√
1 +

∣∣∣∣ δ

D

∣∣∣∣, bF = eiθ η√
2

√
1 −

∣∣∣∣ δ

D

∣∣∣∣. (10)

In Eqs. (8) and (9), when we set g → 0, the Floquet energies E F±
are reduced into εc and εv , and Floquet states ψ F± are recovered to 
|c〉 and |v〉, respectively.

The above derivations are based on linearly polarized irradia-
tion, but also valid for circular polarization by regarding the vector 
potential amplitude A as a complex quantity. The irradiation has 
two known effects. (1) It generates resonant gaps on the Floquet 
spectrum. (2) It can change the topologic property of band struc-
ture and create new edge bands, depending on the polarization 
of irradiation. In the following, we will apply the above theory to 
graphene and investigate how the two effects act on graphene.

3. Resonant gaps of bulk graphene

There are two non-equivalent valleys in graphene. The low-
energy Hamiltonian of valley K reads

Hk = σ · k =
(

0 kx − iky

kx + iky 0

)
, (11)

where σ = (σx, σy) is the Pauli matrix set, k = (kx, ky) is the 
wavevector, and the Fermi velocity v F is set to be 1. The band 
energies and band states are

εc/v = ±k, |c, v〉 = 1√
2

(
1

±eiϕ

)
, (12)

where k = (k2
x + k2

y)
1/2 and ϕ = arg(kx + iky) reflect the amplitude 

and orientation of k. When the graphene is under illumination, the 
Peierls substitution k → k −A should be applied, and this leads to 
Hk which is replaced with Hk − σ · A. Because the momentum 
is defined by p = ∇k Hk = σ , we have substitution Hamiltonian 
Hk − A · p, which is just the Hamiltonian in Eq. (1) [35]. So, the 
A · P approximation can also be applied to graphene [35], and the 
detailed discussion about this can be found in the Appendix. Ac-
cording to Eq. (3), the transition element is calculated as

g = i (Ax sinϕ − A y cosϕ), (13)
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