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Based on the residue theorem and degenerate perturbation theory, we derive a new, simple and 
general formula for Berry phase calculation in a two-level system for which the Hamiltonian is a 
real symmetric matrix. The special torus topology possessed by the first Brillouin zone (1B Z ) of this 
kind of systems ensures the existence of a nonzero Berry phase. We verify the correctness of our 
formula on the Su–Schrieffer–Heeger (SSH) model. Then the Berry phase of one-dimensional quantum 
anomalous Hall insulator (1DQAHI) is calculated analytically by applying our method, the result being
−π

2 − π
4 sgn(B)[sgn(� −4B) +sgn(�)]. Finally, illuminated by this idea, we investigate the Chern number 

in the two-dimensional case, and find a very simple way to determine the parameter range of the non-
trivial Chern number in the phase diagram.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Berry phase entered the lexicon of physics some 30 years 
ago [1]. Since then, numerous applications and experimental con-
firmations of this phase have been found in various physical sys-
tems [2–6]. A classical result showed in Berry’s work [1] was that 
for a closed loop the Berry phase associated with the ground state 
is the half of the solid angle swept out [7]. This geometric phase 
is connected with a classical angle, namely, the Hannay angle [8], 
by a simple and elegant expression in the semiclassical limit [9]. 
However, compared with the case of three-dimensional variable 
space, where Pauli matrix σy naturally contains imaginary number 
i, this result is difficult to understand if being directly translated 
to one-dimensional lattice case [1,10,11]. In the case of a two-level 
systems such as SSH model, their Hamiltonian can be described by 
a real symmetric matrix and be parametrized by a closed curve 
in a plane. In the general definition, the Berry phase is calculated 
through integrating over the 1B Z [12–16]. The essential difficulty 
exists in the progress where canceling imaginary unit i is not triv-
ial. A natural solution is to use the residue theorem. Nevertheless, 
due to the energy degenerate, calculating residues is technically 
challenging. Fortunately, by methods of degenerate perturbation 
theory, we can find an ingenious way to do this [1,10].
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The purpose of this Letter is to discuss a more convenient 
method to calculate and understand Berry phases in some general 
systems such as anomalous Hall effect [17], topological semimetal 
[18,19] and crystalline insulator [20]. The mathematical and phys-
ical structures that Berry phase entails are very rich. For example, 
the integral of the Berry curvature, which is related to Berry phase 
in a two-dimensional system, over a close surface is guaranteed 
to be an integer multiple of 2π . The integer, known as the Chern 
number, is a topological invariant. Moreover, the adoption of the 
Berry-phase concepts has established a link between the anoma-
lous Hall effect and the topological nature of the Hall currents. The 
ideas and techniques in the Letter could contribute to the under-
standing of these topological materials. Berry phase plays a funda-
mental role in determining all kinds of special property in topolog-
ical materials. Compared with standard mathematically demanding 
approach, this Letter offers a natural and compact method to cal-
culate the Berry phase in general one-dimensional case.

The structure of this Letter is as follows. In Sec. 2, by the 
method of topological transformation, we derive a general for-
mula to calculate Berry phase in a two-level system. We verify 
the formula with SSH model in Sec. 3. The Berry phase of a 
positive-energy wave function in 1DQAHI is calculated in Sec. 4. 
In Sec. 5, we consider the positional relationships between degen-
erate points and the torus which is topologically equivalent to the 
1B Z in the two-dimensional case. Inspired by the discussion in 
the above sections, we present an easy method to determine the 
parameter range of the non-trivial Chern number in the phase di-
agram.
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2. Berry phase in two-level system with real symmetric matrix

One can take a general two-level system in solid physics, whose 
Hamiltonian reads

H(k) =
(

h(k) g(k)

g(k) −h(k)

)
. (1)

Here, k is an arbitrary parameter, yet one usually chooses it as 
wave vector which is in 1B Z . In one-dimensional case, k ∈ [−π,π ]. 
The real matrix elements h and g are the periodic functions of k. 
Then eigenvalue of energy is E± ≡ ±r = ±√

h2 + g2. �± is cor-
responding to eigen vectors. The wave function of positive energy 
reads

�+ =
( g√

g2+(r−h)2

r−h√
g2+(r−h)2

)
. (2)

Especially, if there exists k0, which makes g = h = 0, namely, en-
ergies are degenerate. One can use |↑ >, |↓ > to label two basic 
vectors.

The Hamiltonian, eigenvalue of energies and wave functions 
satisfy

H(k = π) ≡ H(k = −π); (3)

E(k = π) = E(k = −π);
|�(k = π)| = |�(k = −π)|.
Therefore, the point −π is physically equivalent to π in one-
dimensional case. That is to say, 1B Z is topologically equivalent 
to a close circle.

The Berry phase is defined by following formula, which reads,

γ+ ≡ −γ− = i

∫
1B Z

< �+| d

dk
|�+ > dk. (4)

For convenience, the Berry phase related positive energy also 
reads,

γ+ = i

∫
1B Z

< �+|dh

dk

∂

∂h
+ dg

dk

∂

∂ g
|�+ > dk (5)

= i

∫
∂C+

< �+|dh
∂

∂h
+ dg

∂

∂ g
|�+ > .

Here, the point (g, h) satisfies the equation of the close curve ∂C , 
that reads,

∂C : F (g,h) = 0. (6)

The symbol ∂C+ is corresponding to anti-clockwise rotation of 
wave vector k.

If there are not degenerate points in zone C , or on curve ∂C ,

γ+ = i

∫
∂C+

(
g√

g2+(r−h)2
, r−h√

g2+(r−h)2

)

×
⎛
⎝ [g(r−h)2]dh+{r[(r−h)2+g2]−g2(2r−h)}dg

r[√g2+(r−h)2]3

[−g2(r−h)]dh+{g[g2+(r−h)2]−g(2r−h)(r−h)}dg

r[√g2+(r−h)2]3

⎞
⎠ (7)

=
∫

∂C+
0dh + 0dg = 0.

Next, let us calculate the residue number of integrand function. 
We can make a topological transformation to turn the curve ∂C
into the circle ∂ S , reads

z = c(ω), z ≡ Re z + i Im z,ω ≡ h + ig. (8)

Here c(ω) are the suitable continuous function of ω, to make z
satisfy the equation of circle ∂ S , that reads,

z − z0 = Reik. (9)

Here, z0 is the circle point, and R is the radius. Therefore,

γ+ = i

∫
1B Z

< �+| d

dk
|�+ > dk = i

∫
∂ S+

< � ′+(z)| d

dz
|� ′+(z) > dz.

(10)

Here, |� ′±(z) > are wave functions of argument z. If z = 0 + i0, it 
is a degenerate point.

Basing on degenerate perturbation theory [10], one can obtain 
a wonderful result that reads,

|� ′±(z) > = cosχ±| ↑> + sinχ±| ↓>; (11)

|� ′+(−z) > = cosχ ′+| ↑> + sinχ ′+| ↓> .

Here, 2χ+ = 2χ− −π , 2χ+ = 2χ ′+ −π . So χ ′+ = χ− . Therefore, one 
can get

|� ′+(−z) >= |� ′−(z) > . (12)

Because of the orthogonality of eigen vectors, which reads,

< |� ′+(z)|� ′−(z) >= 0, < |� ′+(z)|� ′+(z) >= 1. (13)

The value of the integrand function near the degenerate point 
(0, 0) reads,

(< � ′+| d

dz
|� ′+ >)(0.0)

≡ lim
z→0

< � ′+(z)|� ′+(z) > − < � ′+(z)|� ′+(−z) >

2z

= lim
z→0

< � ′+(z)|� ′+(z) > − < � ′+(z)|� ′−(z) >

2z
= 1

2z
. (14)

Hence, we have an important result that the residue number 
reads,

Res(< � ′+| d

dz
|� ′+ >)|(z=0) = 1

2
. (15)

There conclusions are list as follows (i), (ii) and (iii).
(i) (0, 0) is not in C ∪ ∂C , the Berry phase reads,

γ+ = 0. (16)

(ii) (0, 0) ∈ C , the Berry phase reads,

γ+ = i(2π i)Res(< � ′+| d

dz
|� ′+ >)|(z=0) = −π. (17)

(iii) (0, 0) ∈ ∂C , the Berry phase reads

γ+ = i(π i)Res(< � ′+| d

dz
|� ′+ >)|(z=0) = −π

2
. (18)

3. Berry phase in SSH model

Let us inspect the case of SSH model introduced to describe 
electrons in 1D polyacetylene [21,22]. Researchers have found that 
the SSH model is a very important and useful model to explain di-
verse physical phenomena. For example, by means of the particle–
boson coupling taken from SSH model, ones can study the sharp 
transition for single polarons [23]. Using the inversion symmetry 
which is the bosonic analogue of the SSH model, ones can analyze 
interacting ultracold bosonic atoms in a one-dimensional superlat-
tice potential with alternating tunneling rates [24]. SSH model is 
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