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We present a versatile inequality of uncertainty relations which are useful when one approximates an 
observable and/or estimates a physical parameter based on the measurement of another observable. It 
is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov’s 
weak value, which also determines the classical Fisher information in parameter estimation, turning our 
inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation 
arises as a special case of our inequality, and since the parameter estimation is available as well, our 
inequality can treat both the position–momentum and the time–energy relations in one framework albeit 
handled differently.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty relations lie undoubtedly at the heart of quan-
tum mechanics, characterizing the indeterministic nature of mi-
croscopic phenomena which stem from the incompatibility of si-
multaneous measurement of two non-commuting observables, as 
typically exemplified by position and momentum. Soon after the 
celebrated exposition of Heisenberg’s tradeoff relation between er-
ror and disturbance [1], there appeared a revised form called the 
Robertson–Kennard (RK) inequality [2,3] which refers to the rela-
tion in standard deviation in independently performed measure-
ments on the two observables. Because of its mathematical clarity 
and universal validity, the latter has now become a standard text-
book material.

Later, these relations were elaborated from operational view-
points by taking account of the measurement device, and this has 
yielded, e.g., the Arthurs–Goodman inequality [4] and the Ozawa 
inequality [5] which concern a mixed relation among error, distur-
bance and standard deviation. Apart from these, the uncertainty 
relations on error and disturbance have also been analyzed in 
quantum estimation theory [6].

On the other hand, the uncertainty relation between time and 
energy has to be dealt with quite independently from these, due 
to the lack of a genuine time operator conjugate to the Hamilto-
nian. For this, several ingenious frameworks have been proposed, 
including the one devised by Mandelshtam–Tamm [7] and that by 
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Helstrom [8], where the uncertainty relation is shown to be iden-
tified with a quantum version of the Cramér–Rao inequality [9] in 
estimation theory.

In this paper, we present a novel inequality of uncertainty rela-
tions for analyzing the error of approximating an observable based 
on the measurement of another observable through an appropriate 
choice of proxy functions. Since the standard deviation may be re-
garded as a special case of our approximation error, our inequality 
can formally be considered as an extension of the RK inequality. 
Moreover, instead of approximating an observable, we may also 
choose to estimate a physical parameter pertinent to the observ-
able, so that the time–energy relation can be treated along with 
the position–momentum relation.

Interestingly, in both approximation and estimation, Aharonov’s 
weak value [10] of the concerned observable arises as a key geo-
metric ingredient, deciding the optimal choice for the proxy func-
tions. We shall also find in the context of parameter estimation 
that the weak value determines the classical Fisher information 
and turns our inequality into the Cramér–Rao inequality.

2. Uncertainty relation for approximation

Before presenting our uncertainty relation, let us recall the most 
familiar form of the relations, i.e., the Robertson–Kennard (RK) in-
equality,

‖A − 〈A〉‖ · ‖B − 〈B〉‖ ≥ 1

2
| 〈[A, B]〉 | , (1)

valid for two observables A, B . Here, 〈A〉 = 〈ψ |A|ψ〉 is the expec-
tation value of A under a given (normalized) state |ψ〉, [A, B] =
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AB − B A is the commutator, and ‖X‖ = √〈X2〉 is the operator 
seminorm defined for a self-adjoint operator X . The RK inequality 
gives the lower bound for the product of the standard deviation 
σ(X) = √

Var[X] = ‖X − 〈X〉‖ for the two observables A and B . 
Needless to say, the lower bound of the RK inequality (1) takes the 
state-independent value h̄/2 when A and B are canonically conju-
gate to each other, [A, B] = ih̄.

In place of the standard symmetric treatment of the observables 
in the RK inequality (1), we now consider an asymmetric but more 
versatile form given by

‖A − f (B)‖ · ‖g(B)‖ ≥ 1

2
| 〈[A, g(B)]〉 | , (2)

valid for arbitrary self-adjoint operator functions f (B) and g(B) of 
B (the advantage of this asymmetric treatment will become clear 
shortly). More explicitly, the operator f (B) is defined from a func-
tion f (b) of b through the spectral decomposition,

f (B) =
∫

f (b)|b〉〈b|db, (3)

where {|b〉} is the basis set of the eigenstates B|b〉 = b|b〉, and the 
integral in (3) is understood to imply summation when the eigen-
values are discrete. The operator g(B) can be defined analogously 
from a function g(b). In our discussion, f (b) and g(b) are assumed 
real so that both f (B) and g(B) are self-adjoint, but the definition 
(3) can be applied to any normal operators using complex func-
tions. The RK inequality (1) arises from (2) as a special case by 
letting f (B) = 〈A〉 (realized by the constant function f (b) = 〈A〉) 
and g(B) = B − 〈B〉.

The proof of the inequality (2) goes precisely the same way 
as that of the RK inequality. Namely, given two self-adjoint op-
erators X , Y , we have ‖X‖2 · ‖Y ‖2 ≥ |〈XY 〉|2 by the Cauchy–
Schwarz (CS) inequality. We also have |〈XY 〉|2 = |〈[X, Y ]/2 +
{X, Y }/2〉|2 where {X, Y } = XY + Y X , but since 〈[X, Y ]/2〉 is 
purely imaginary whereas 〈{X, Y }/2〉 is real, we obtain |〈XY 〉|2 =
|〈[X, Y ]/2〉|2 + |〈{X, Y }/2〉|2 ≥ |〈[X, Y ]/2〉|2. Combining these, and 
taking the square root of the two sides, we arrive at ‖X‖ · ‖Y ‖ ≥
1
2 | 〈[X, Y ]〉 |. Since X and Y are arbitrary, we may put X = A − f (B)

and Y = g(B) to obtain our inequality (2).
Although our inequality is merely an asymmetric generaliza-

tion of the RK inequality, the acquired form (2) allows for a 
novel viewpoint on the uncertainty relation. Specifically, noting 
that ‖A − f (B)‖ gives a measure for the ‘distance’ between the 
two observables A and f (B), we may regard (2) as an inequal-
ity giving the lower bound for the distance under the choice of 
f (B) and g(B). This will be made more apparent by introducing 
ḡ(B) = g(B)/‖g(B)‖ to rewrite (2) as

min
f

‖A − f (B)‖ ≥ max
ḡ

1

2
|〈[A, ḡ(B)]〉| . (4)

This indicates that the minimal distance between A and the family 
of all self-adjoint operators f (B) generated by B , or the minimal 
error in the approximation of A from the measurement of B in 
terms of real proxy functions f (b), is dictated by the maximal de-
gree of non-commutativity of A with respect to the family of all 
self-adjoint operators ḡ(B) normalized as ‖ḡ(B)‖ = 1.

Clearly, our inequality will be useful in the operational con-
text in which one measures only B and approximates A out of the 
measurement result by choosing the proxy function f (B) properly. 
In this context, the choice f (B) = 〈A〉, which makes the distance 
into the standard deviation σ(A), is far from the optimal one, hav-
ing only its expectation value right. In fact, we shall see shortly 
that the optimal choice for f (b) is provided explicitly by the real 
part of the weak value Aw(b) which is defined in the quantum 
process specified by the initial state |ψ〉 and the final state |b〉

(see (5)). Under this optimal choice together with g(B) = B − 〈B〉, 
our inequality (2) yields an uncertainty relation stricter than the 
RK inequality. The freedom of choice for g(b) may further be ex-
ploited for considering parameter estimation, that is, for estimating 
a parameter t that specifies the state, as exemplified later by the 
situation in which the state varies unitarily with the generator A. 
In this context, the optimal choice for g(b) turns out to be given 
by the imaginary part of the weak value Aw (b).

3. Optimal choice and the weak value

In what follows, we assume for simplicity the non-degeneracy 
of B and the condition 〈b|ψ〉 �= 0 for all |b〉, which can always be 
ensured if one chooses B appropriately with respect to the given 
state |ψ〉. The primary role of this restriction is to avoid the math-
ematical elaborations required to introduce the weak value

Aw(b) = 〈b|A|ψ〉
〈b|ψ〉 (5)

in a completely general manner, so that we may regard it simply 
as a function b 	→ Aw(b) from the eigenvalues of the self-adjoint 
operator B to complex numbers. (In order to lift this restriction, 
we need to adopt the definition of the weak value being an equiv-
alence class of the family of functions with ambiguity at the singu-
lar points 〈b|ψ〉 = 0, for which our argument below goes through 
without an essential change.) Here, note also the state-dependence 
of the weak value Aw (b).

Now, in order to see the statements made above, let us first 
note the identity,

A|ψ〉 =
∫

|b〉〈b|A|ψ〉db

=
∫

Aw(b)|b〉〈b|ψ〉db = Aw(B)|ψ〉, (6)

where

Aw(B) =
∫

Aw(b)|b〉〈b|db (7)

is the operator function defined analogously to (3) with f (b) re-
placed formally by the weak value Aw(b) given in (5). Note that, 
due to the complex nature of Aw(b), the operator Aw(B) is not 
necessarily self-adjoint but rather normal, and that it is dependent 
on the choice of the state |ψ〉.

Then, from (6) we have

〈 f (B)A〉 = 〈 f (B)Aw(B)〉 (8)

for any self-adjoint f (B), and thus

Re 〈 f (B)A〉 = 〈 f (B)ReAw(B)〉,
Im 〈 f (B)A〉 = 〈 f (B)ImAw(B)〉, (9)

which specifically leads to

〈A〉 = 〈ReAw(B)〉,
0 = 〈ImAw(B)〉 (10)

for the choice of the constant function f (b) = 1. Another conse-
quence of (6) is

‖A‖2 = ‖ReAw(B)‖2 + ‖ImAw(B)‖2. (11)

These statistical properties on average and correlation suggest 
that the operator ReAw(B) may furnish the optimal proxy function 
for A minimizing the distance ‖A − f (B)‖. That this is indeed the 
case can be confirmed at once from the ‘Pythagorean identity’

‖A − f (B)‖2 = ‖A − ReAw(B)‖2 + ‖ReAw(B) − f (B)‖2 (12)
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