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In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the 
ring interacting with the dissipative bath as an example. We demonstrate that even in presence of 
environment, there is macroscopically quantized observable which can take only integer values in the 
zero temperature limit. This fact follows from the total angular momentum conservation combined with 
momentum quantization for bare particle on the ring. The nontrivial thing is that the model under 
consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar–
Eckern–Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after 
mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the 
existence of additional conservation law. Some generalizations of the obtained results are also presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The phenomenon of Coulomb blockade [1–6] in different meso-
and nanostructures is one of the most striking manifestations of 
the charge quantization. This phenomenon can be observed, for 
example, in the so called single-electron box (SEB). This system 
consists of small metallic grain, which is coupled to lead by tun-
nel junction and capacitively to gate electrode. One can change the 
number of electrons on the island by tuning the gate voltage. How-
ever, the charge of the island can be changed only by tunneling 
of one additional electron from the lead. It means that the total 
charge of the grain is equal to an integer number of elementary 
electron charges e, or, in other words, charge is quantized. This 
phenomenon can be observed if the temperature of the system 
is much lower than the Coulomb energy of the grain. The sim-
plest model Hamiltonian, which describes this system, is given by 
Coulomb energy operator

Ĥ = EC (N̂ − C V g/e)2, (1)

where C is a capacitance of the island, EC = e2/(2C) is a charging 
energy, V g is a gate voltage. Here we neglect the change of elec-
tron energy due to tunneling. This can be justified if mean level 
spacing of the island is the smallest energy scale of the system. 
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N̂ is an operator of the number of excess electrons in the grain. 
Its spectrum is represented by integer numbers, so the charge of 
the grain q̂ = eN̂ is quantized. Let us note that this Hamiltonian 
becomes similar to the Hamiltonian of the charged particle on the 
ring if one makes the substitution N̂ → p̂, EC → 1/(2mR2), where 
m is the particle mass, R is a ring radius and p̂ is an operator of 
the particle angular momentum, which is canonically conjugated 
to position operator θ̂

[p̂, θ̂ ] = −i. (2)

In coordinate representation θ varies from 0 to 2π and p̂ =
−i∂/∂θ . The last object, which should be identified in order to 
complete the mapping is the combination qx = C V g/e. It is pre-
cisely the magnetic flux piercing the ring qx → φx = �/�0 in units 
of flux quanta �0 = 2π/e. In other words, one can observe that the 
SEB can be mapped onto one-channel ring with single electron in 
the magnetic field. The important thing is that this mapping goes 
far beyond the simple approximation described above and is valid
even if the electron tunneling between lead and grain is properly 
taken into account. This case might be considered in the frame-
work of well-known Ambegaokar–Eckern–Schon (AES) approach [7,
8,1] if one employs smallness of tunnel barrier transparency. After 
integration over fermionic degrees of freedom one comes to the ef-
fective theory for charge degree of freedom. The resulting effective 
action (see below) contains in addition to the charging part, the 
non-local in time contribution which describes electron tunneling. 
It turns out that the effective action which describes particle on 
the ring interacting with the dissipative environment has precisely 
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the same form [9–13]. Moreover, from the form of the action it fol-
lows that the environment is of Caldeira–Leggett (CL) type [14,1]. 
Note, that the equivalence of this two models has been extensively 
used by various authors in the numerical computations of the SEB 
properties (see for example [15,11] and references therein).

As we mentioned above the average charge on the island is 
quantized at zero temperature, but, strictly speaking, this state-
ment is correct only in the limit of vanishing tunnel coupling be-
tween the lead and grain. In general case the average charge varies 
continuously with gate voltage changing. Recently it was argued by 
Burmistrov and Pruisken [16,17] (see also Refs. [18–20]) that in the 
SEB there is another quantity – an “effective charge” which is nev-
ertheless quantized in the zero temperature limit. They related this 
quantity to the sensitivity of the system to the changing of bound-
ary conditions. Also the unifying scaling diagram of the problem 
was introduced by usage of the similarity between AES theory and 
the theory of quantum Hall effect. Burmistrov and Pruisken sup-
ported their statements by explicit calculations in the cases of the 
small and large couplings.

The aim of the present letter is to prove rigorously the exis-
tence of the “effective charge”-like quantity, its quantization and 
to shed light on the underlying physics especially in the context of 
the mapping discussed above.

The paper organized as follows. At the beginning, we introduce 
the partition function for the particle on the ring interacting with 
the environment and its relation to the SEB. After that we rewrite 
it in the operator formalism and introduce fictitious many-particle 
system. On the next step we demonstrate, that the considered sys-
tem has additional integral of motion and relate this conserving 
quantity to macroscopic quantization phenomena. At the end of 
the paper we generalize all obtained results to the more compli-
cated cases and discuss their physical meaning.

2. Model and basic definitions

Let us consider particle on the ring interacting with linear dis-
sipative environment at temperature T . It is well known that the 
partition function in this case can be represented through the path 
integral as [9–11]

Z =
2π∫
0

dθ0

∞∑
n=−∞

e2π inφx

θ(β)=θ0+2πn∫
θ(0)=θ0

Dθe−S[θ(τ )], (3)

where

S[θ] ≡ S0[θ] + Si[θ] = mR2

2

β∫
0

θ̇2(τ )dτ

+ g

4

β∫
0

dτ

β∫
0

dτ ′α(τ − τ ′)eiθ(τ )−iθ(τ ′). (4)

Here m and R are the mass of the particle and the ring radius, g is 
the coupling constant between particle and environment, β = 1/T
is the inverse temperature, and the kernel α(τ −τ ′) is governed by 
statistical and dynamical properties of the environment. Integra-
tion is performed over trajectories with a given winding number n, 
which are periodic up to constant θ(β) = θ(0) + 2πn. φx = �/�0
is the flux piercing the ring in the units of flux quanta �0 = 2π/e
(here and below we set the Planck’s constant and the speed of 
light equal to unity h̄ = 1, c = 1). Due to bosonic nature of the 
environment, kernel α(τ ) is the periodic function of imaginary 
time τ with period equal to β . It can be represented in the form

α(τ ) = T

π

∞∑
n=−∞

F (ωn)e−iωnτ , (5)

where ωn = 2πnT is Matsubara frequency and function F (z) is 
symmetric F (z) = F (−z) and equals to zero at zero frequency 
F (0) = 0. Usually, the last condition might be achieved by sub-
traction of some unimportant constant from the initial action. The 
CL environment [1,14] corresponds to F (z) = |z|. This case is very 
important from the practical point of view, since it is equivalent 
to the AES model describing the single-electron box. As we men-
tioned in the Introduction, in order to relate these two problems 
one should identify 1/(2mR2) with charging energy EC of the is-
land, g with dimensionless conductance gt of the tunnel junction 
between island and reservoir, and flux φx with the external charge 
qx induced by gate voltage. Below we will consider essentially par-
ticle on the ring, but on every step we will have SEB in mind.

3. Decoupling of the action

The key idea of our approach consists in proper decoupling of 
the interaction term with help of fictitious many-body system in-
teracting with the particle on the ring with Hamiltonian.

Ĥ f = (p̂ − φx)
2

2mR2
+

∑
k

εk

(
â†

kâk + b̂†
kb̂k

)

+ √
geiθ̂

∑
k

(âk + b̂†
k) + √

ge−iθ̂
∑

k

(â†
k + b̂k). (6)

Here θ̂ is the angle variable corresponded to the position of the 
particle on the ring, and p̂ is the angular momentum operator. The 
first part of Hamiltonian describes free particle as we discussed 
in the Introduction. Other terms are fictitious system Hamiltonian 
and interaction between particle and fictitious system. It consists 
of two sets of bosonic degrees of freedom, which creation and 
annihilation operators are denoted by â†

m, ̂b†
m and âm, ̂bm corre-

spondingly. Commutation relations are standard

[âk, âl] = [âk, b̂l] = [b̂k, b̂l] = [âk, b̂†
l ] = 0, (7)

[âk, â†
l ] = [b̂k, b̂†

l ] = δk,l, (8)

where δk,l is the Kroenecker symbol. In order to establish the con-
nection between system with Hamiltonian (6) and initial system 
with action (4) one should make the special choice of energies εk . 
After transformation of partition function Z = tr e−β Ĥ f into path 
integral representation one can obtain

α(τ ) = −4
∑

k

〈T (âk(τ ) + b̂†
k(τ ))(â†

k(0) + b̂k(0))〉a,b, (9)

where averaging is performed with equilibrium non-interacting 
density matrix 〈...〉a,b ≡ tr(...e−β Ĥb )/ tr(e−β Ĥb ), where

Ĥb =
∑

k

εk

(
â†

kâk + b̂†
kb̂k

)
, (10)

T is the time ordering symbol, and

âk(τ ) = eτ Ĥb âke−τ Ĥb , â†
k(τ ) = eτ Ĥb â†

ke−τ Ĥb , (11)

b̂k(τ ) = eτ Ĥb b̂ke−τ Ĥb , b̂†
k(τ ) = eτ Ĥb b̂†

ke−τ Ĥb (12)

are operators in Matsubara representation. After averaging one has

F (ωn) = −8π
∑

k

εk

ω2
n + ε2

k

+ C

= −8π

∞∫
0

dz

2π

z J (z)

ω2
n + z2

+ C, (13)
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