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We consider two particles of equal mass and opposite charge in a plane subject to a perpendicular 
constant magnetic field. This system is integrable but not superintegrable. From the quantum point of 
view, the solution is given by two fourth degree Hill differential equations which involve the energy as 
well as a second constant of motion. There are two solvable approximations in relation to the value of a 
parameter. Starting from each of these approximations, a consistent perturbation theory can be applied 
to get approximate values of the energy levels and of the second constant of motion.
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1. Introduction

In a previous paper [1] we have considered a kind of Landau 
system with two charged particles in a plane. The charges have 
the same absolute value and opposite sign and the same mass. 
These particles are subject to a constant perpendicular magnetic 
field. The same situation, under a different point of view has been 
discussed in some recent papers [2,3].

This model has considerable interest in Physics. For instance, 
it can be interpreted as a positronium system, or as a Frenkel or 
Mott–Wannier exciton [4]. Other applications have been studied in 
[5,6]. The model is also closely related to the system of a particle 
under two fixed gravity centers, a classical subject [7].

We have shown in [1] that this system may be studied from 
the point of view of either classical or quantum mechanics. The 
transition from the former to the latter is achieved through canon-
ical quantization [8]. This system has four independent commuting 
constants of motion, or symmetries. Classically, the commutation is 
defined in terms of Poisson brackets. This system is integrable al-
though not superintegrable.

In the classical analysis presented in [1], we have used two of 
these constants, written in compact form as the components of the 
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two dimensional vector μ, in order to reduce by two the number 
of degrees of freedom, so that we have an effective two dimen-
sional system.

The resulting Hamiltonian is a sum of a kinetic term plus an ef-
fective potential, which is given by the sum of a Coulomb potential 
plus a shifted harmonic oscillator. Along with this effective Hamil-
tonian, we have an additional constant of motion, denoted by T . 
This fact allows to separate the system in elliptic coordinates.

In the present Letter, we focus our interest on the quantum 
version of this model. Within this quantum context, the separa-
tion in elliptic coordinates of the effective system leads to a pair 
of equations. One is a fourth degree periodic Hill equation, while 
the second one is a similar modified Hill equation with hyperbolic 
functions [9,10]. Up to our knowledge, analytic solutions for these 
equations are not known.

Along this presentation, we shall discuss the possibility of ob-
taining approximate solutions of these equations by means of a 
procedure based on perturbation theory. In our calculations, we 
shall use μ := |μ| as natural perturbative parameter. This μ, to be 
defined in the next section (right after (6)), is a constant of mo-
tion and gives the position of the center of the displaced harmonic 
oscillator.

The zero order of perturbation will approximately describe the 
system either for μ << 1 or for μ >> 1. In the first case, the 
Coulomb term will be dominant with respect to the oscillatory 
term, now used as a perturbation. The situation is reversed in the 
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second case, where the oscillatory term is dominant and the per-
turbation is given by the Coulomb part.

We shall see that in the zero order approximation valid for 
μ << 1, or Coulomb approximation, both trigonometric and hy-
perbolic Hill equations become a pair of equations of the type 
discussed by Razavy in [11,12], which are solvable. These equa-
tions were known by some authors as the hyperbolic Wittaker–Hill 
equations. Nevertheless, since we are using as the reference the 
work by Razavy and following the use of some recent authors, 
we prefer to use the terminology Razavy type equations or simply, 
Razavy equations. Their solutions coincide with the bound solu-
tions of the Coulomb problem and take significant values close to 
the origin of the potential. This means that the relative position 
between both particles keeps very small.

When μ >> 1, we can again approximate both Hill equations 
by Razavy type equations. Their solutions describe the solutions 
for the harmonic oscillator in elliptic coordinates. These solutions 
are the bound states of the harmonic oscillator and correspond to 
much larger values of μ.

Using these zero order approximations as the unperturbed sys-
tems, we propose perturbations of first order. In this approach, we 
assume that the representation in terms of elliptic coordinates is 
valid for any order of perturbation.

This Letter is organized as follows: In Section 2, in order to 
orient the reader and for the sake of completeness, we summa-
rize the results obtained in [1] with some additional information. 
We give in Section 3 the exact resolution of the zero order Razavy 
equations, where we pay an special attention to the correct choice 
of the boundary conditions and its consequences. In Section 4, we 
discuss the first order perturbative approach to solutions. Explicit 
expressions are left to Supplementary Material. We close our dis-
cussion with some Concluding Remarks.

2. Presentation of the problem

In this section, we briefly review the treatment given in [1]. Let 
us begin with the classical description of the model. The Hamil-
tonian describing two charged particles, with charges e and −e, 
of equal mass m, interacting among themselves by the Coulomb 
potential and subject to an external constant magnetic field per-
pendicular to the plane in which the particles move is given by 
(c = 1):

H = 1

2m
[(p(1) − e A(x(1)))2 + (p(2) + e A(x(2)))2] − e2

|x(1) − x(2)| .

(1)

Here by x(k) , p(k) , k = 1, 2, we denote positions and linear mo-
menta of both particles. The vector potential A(x) is taken in the 
symmetric gauge,

Ai(x) = h εi j x j, A(x) = (h x2,−h x1) , (2)

where εi j is the totally antisymmetric tensor in two dimensions. 
We are using the convention of summation over repeated indices. 
The magnetic field is parallel to the z axis with intensity B = −2h. 
For each particle k (k = 1, 2), we define a kinematic momentum 
π (k) with components,

π
(1)
i = p(1)

i − e A(1)
i = p(1)

i − eεi j x
(1)
j h ,

π
(2)
i = p(2)

i + e A(2)
i = p(2)

i + eεi j x
(2)
j h . (3)

Next, define the components, �i of the total momentum and the 
center of mass (c.o.m.) coordinates Q i , i = 1, 2, by

�i := π
(1)
i + 2ehεi j x

(1)
j + π

(2)
i − 2ehεi j x

(2)
j ,

Q i := 1

2
(x(1)

i + x(2)
i ) (4)

and the relative momentum and coordinates as

πi := 1

2
(π

(1)
i − π

(2)
i ) , qi := x(1)

i − x(2)
i , i = 1,2 . (5)

Due to the fact that the total charge of the system vanishes, the 
functions {q, π , Q, �} constitute a canonical coordinate set. We 
could have equally discussed the case of two particles with dif-
ferent mass m1, m2; then, a similar canonical set would have been 
obtained.

In terms of these new coordinates, the initial Hamiltonian (1)
has the following form:

H = 1

4m
�2 − eh

m
εi j�iq j + 1

m
π2 + e2h2

m
q2 − e2

q

= 1

m
π2 + e2h2

m
(q + μ

2
)2 − e2

q
, (6)

with q := |q|, μ j = −εi j�i/eh and μ := |μ|. As the coordinates Q
are cyclic, the components of the “total momentum” � are con-
stants of motion given in terms of μ. From (6), we conclude that 
the effective system consists of a particle, with a reduced mass 
m/2 and charge e, in the plane under the influence of a Coulomb 
potential set at the origin with charge −e, plus a shifted harmonic 
oscillator potential with angular frequency ω = 2eh/m = e|B|/m, 
which is the cyclotron frequency, being |B| = 2h the magnetic field 
intensity.

As is clear from (4), the constant of motion � is the sum of 
the generators of magnetic translations for each particle, just as 
they are defined for the Landau system of a single particle in a 
constant magnetic field. In the Landau system, the values of � give 
the center of the circular trajectories; in this case, the values of �
determine the relative position of the two centers of the Coulomb 
and oscillator effective potentials.

As the first term, 1
4m �2 = (ehμ)2

4m , in (6) is a constant, it will be 
hereafter dropped to simplify the expressions. Nevertheless, it will 
be recovered later in order to interpret the approximation μ >> 1.

As shown in [1], this system has two independent constants of 
motion:

H = π2

m
+ U (q) ; T := πi gi j(q)π j + �(q) . (7)

Here, H is the effective Hamiltonian given in (6), without the 
above mentioned constant term. The second constant of motion T
includes a “kinetic term” given by1:

πi gi j(q)π j = L2 + (μ1π2 − μ2π1)L = 1

2
(L · L′ + L′ · L) ,

L := q1π2 − q2π1 , (8)

where L and L′ are the angular momenta with respect to the ori-
gin and to the point −μ, respectively. By the way, this term has 
been already obtained by Erikson–Hill in [14] for the two center 
problem. The kinetic tensor can also be expressed as

gij = q∗
i q∗

j + 1

2
(μ∗

i q∗
j + q∗

i μ
∗
j ) , (9)

where, q∗
i = εikqk , μ∗

i = εikμk . The “potential term” � is given by

�(q) = 2m e2

μ2

q · μ
q

+ e2h2

4
(q2μ2 − (q · μ)2) . (10)

Note that T is a constant of motion in the sense that {H, T } = 0, 
where {·, ·} stands for Poisson bracket. Then with the help of T , 
we can separate the system using the confocal elliptic coordinates 

1 Note that in the quantum case one has to use a symmetrized expression.
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