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The behavior of the average velocity, its deviation and average squared velocity are characterized using 
three techniques for a 1-D dissipative impact system. The system – a particle, or an ensemble of non-
interacting particles, moving in a constant gravitation field and colliding with a varying platform – is 
described by a nonlinear mapping. The average squared velocity allows to describe the temperature for 
an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; 
(ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing 
analytical and numerical results for the three techniques, one can check the robustness of the developed 
formalism, where we are able to estimate numerical values for the statistical variables, without doing 
extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time 
dependent billiards.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, modeling of dynamical systems, especially 
low-dimensional ones, becomes one of the most challenging ar-
eas of interest among mathematicians, physicists [1–3] and many 
other sciences. Depending on both the initial conditions as well as 
control parameters, such dynamical systems may present a very 
rich and hence complex dynamics, therefore leading to a variety 
of nonlinear phenomena. The dynamics can be considered either 
in the dissipative or non-dissipative regime [4–6] yielding into 
new approaches, new formalisms therefore moving forward the 
progress of nonlinear science.

Since the so called Boltzmann ergodic theory [5,6], the assem-
bly between statistical mechanics and thermodynamics has pro-
duced remarkable advances in the area leading also to progress in 
experimental and observational studies [7–11]. Indeed, statistical 
tools can be used for a complete analysis of the dynamical behav-
ior of such type of systems. Depending on the control parameters, 
phase transitions and abrupt changes in the phase space can be 
observed in time as well as in parameter space [6] while many re-
sults can be described by using scaling laws approach [12]. In this 
paper we revisit the 1-D impact system aiming to obtain and de-
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scribe the behavior of average properties in the chaotic dynamics 
focusing in the stationary state, id est, for very long time, where 
transient effects are not influencing the dynamics anymore. Ana-
lytical expressions will be presented in order to calculate statistical 
properties for the average velocity, its deviation and the average 
squared velocity, when these variables reach the stationary state. 
The developed formalism, allows us to obtain the numerical values 
for these variables, without doing the numerical simulations. We 
will show a remarkable agreement between numerical simulations 
and theoretical analysis considering either statistical and thermal 
variables, giving so robustness, to the developed theory.

The impact system is described by a free particle, or an en-
semble of non-interacting particles, moving under the presence 
of a constant gravitational field and experiencing collisions with 
a heavily vibrating platform [13,14]. For elastic collisions, the dy-
namics leads to a mixed phase space, described in velocity and 
time, and two main properties are observed according to the con-
trol parameter range. If the parameter is smaller than a critical 
one, invariant spanning curves, also called as invariant tori, are 
present in the phase space hence limiting the velocity of the par-
ticle in a chaotic diffusion for certain portions of the phase space. 
On the other hand, for a parameter larger than the critical one, 
invariant spanning curves are not present anymore and unlimited 
diffusion in velocity, for specific ranges of initial conditions, can be 
observed. The scenario is totally different when inelastic collisions 
are considered. In this case, dissipation is in course, hence con-
tracting area in the phase space, therefore leading to the existence 
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of attractors. For strong dissipation and control parameter beyond 
the critical one, attractors are most periodic. For weak dissipation 
and large control parameter, chaotic attractors, characterized by a 
positive Lyapunov exponent [15], dominate over the phase space. 
Giving the attractors are far away from the infinity (in velocity 
axis), dissipation has proved to be a powerful way of suppress un-
limited diffusion. Because of limited diffusion in phase space, the 
behavior and properties for both average velocity, average squared 
velocity or the deviation around the average velocity, known also 
as roughness, are the following. They grow to start with from a 
low initial velocity value and, eventually, they bend towards a 
stationary state [16,17] at very long time. The scenario is scal-
ing invariant with respect to the control parameters and number 
of collisions with the moving platform. By the use of equipartition 
theorem, the steady state, obtained in the asymptotic state, can be 
used to make a connection with the thermal equilibrium of the 
system [17]. Therefore in the present paper, we evaluate numeri-
cally, for long time series, the behavior of: (i) the average velocity; 
(ii) the averaged squared velocity; and (iii) the deviation around 
the average velocity, both for the dissipative impact system. We 
then compare the numerical results with analytical expressions at 
the equilibrium, obtained via statistical and thermodynamics anal-
ysis by using the dynamical equations [17]. A comparison between 
the results obtained using numerical simulation and theoretical 
investigation is remarkable, hence giving robustness to the con-
nection between statistical mechanics, thermodynamics and the 
modeling of dynamical systems. It also improves the theoretical 
formalism that can be extended to other different types of systems 
including the time dependent billiards.

The paper is organized as follows: in Sec. 2 we describe the 
dynamics of the impact system and some of its properties. Sec-
tion 3 is devoted to the discussion of the numerical investigation. 
The results using the dynamical equations and connection with the 
thermodynamics in the stationary state and the discussions of the 
results are presented in Sec. 4. Finally, Sec. 5 brings some final re-
marks and conclusions.

2. The model, the mapping and some statistical properties

The model we consider consists of a particle1 of mass μ mov-
ing under the action of a gravitational field and experiences col-
lisions with a heavy periodically moving wall. This model is also 
referred to as a bouncer or bouncing ball model. It backs to Pustyl-
nikov [18] and has been studied for many years [19–22], with 
several applications in different areas of research such as vibra-
tion waves in a nanometric-sized mechanical contact system [23], 
granular materials [24–28], dynamic stability in human perfor-
mance [29], mechanical vibrations [30–32], chaos control [33,34], 
crises between attractors [35], among many others.

As usual, the dynamics of the system is described by a two-
dimensional, non-linear discrete mapping for the variables velocity 
of the particle v and time t (will be measured latter on as func-
tion of the phase of moving wall) immediately after a nth collision 
of the particle with the moving wall. See Ref. [36] for an analy-
sis as function of the time. The investigations are made based on 
two main versions of the model: (i) complete, which takes into ac-
count the whole movement of the vibrating platform; and (ii) a 
static wall approximation. In this version, the nonlinear mapping 
assumes the wall is static but that, as soon as the particle hits it, 
there is an exchange of energy as if the wall were moving. This is 
then a simplified version and shows to be a very convenient way 
to find out analytical results in the model where transcendental 

1 Or an ensemble of non-interacting particles.

equations do not need to be solved, as they have to be in the com-
plete version. The two versions can be used either to investigate 
non-dissipative [37] and dissipative dynamics [13,14]. Dissipation 
here is introduced by using a restitution coefficient γ ∈ [0, 1] upon 
collision. For γ = 1 the system is non-dissipative albeit area con-
traction in the phase is observed for γ < 1.

To construct the mapping, we consider the motion of the plat-
form is described by yw(tn) = ε cos wtn , where ε and w are, re-
spectively, the amplitude and frequency of oscillation. Moreover, 
we assume that at the instant tn , the position of the particle is the 
same as the position of the moving wall, hence yp(tn) = yw(tn)

and with velocity Vn > 0. The mapping then gives the evolution 
of the states from (Vn, tn) to (Vn+1, tn+1), from (Vn+1, tn+1) to 
(Vn+2, tn+2) and so on. To obtain the analytical expressions of the 
mapping, we have to take into account the time of flight the parti-
cle moves without colliding with the wall and, from it, determine 
the velocity of the moving wall upon collision. From conservation 
of momentum law we obtain the velocity of the particle after col-
lision. We have indeed four control parameters g , ε, w and γ and 
not all of them are relevant for the dynamics. Defining dimension-
less and hence more convenient variables we have Vn = vn w/g
(dimensionless velocity) and ε = εw2/g , which is the ratio be-
tween accelerations of the vibrating platform and the gravitational 
field. We may also measure the time in terms of the number of 
oscillations of the moving wall φn = wtn . Using this set of new 
variables, the mapping is written as

Tc :
{

Vn+1 = −γ (V ∗
n − φc) − (1 + γ )ε sin(φn+1)

φn+1 = [φn + �Tn] mod(2π)
, (1)

where the sub-index c stands for the complete version of the 
model. The expressions for V ∗

n and �Tn depend on what kind of 
collision happens. For the case of multiple collisions, those the par-
ticle experiences without leaving the collision zone (a region in 
space where the moving wall is allowed to move), the correspond-
ing expressions are V ∗

n = Vn and �Tn = φc where φc is obtained 
from the condition that matches the same position for the parti-
cle and the moving wall. It leads to the following transcendental 
equation that must be solved numerically

G(φc) = ε cos(φn + φc) − ε cos(φn) − Vnφc + 1

2
φ2

c . (2)

If the particle leaves the collision zone, than indirect colli-
sions are observed. The expressions for the velocity and phase 
are V ∗

n = −
√

V 2
n + 2ε(cos(φn) − 1) and �Tn = φu + φd + φc with 

φu = Vn denoting the time spent by the particle in the up-
ward direction up to reach the null velocity while the expression 
φd =

√
V 2

n + 2ε(cos(φn) − 1) corresponds to the time the particle 
spends from the place where it had zero velocity to the entrance 
of the collision zone. Finally the term φc has to be obtained nu-
merically from the equation F (φc) = 0 where

F (φc) = ε cos(φn + φu + φd + φc) − ε − V ∗
n φc + 1

2
φ2

c . (3)

For the static wall approximation [38], where no transcendental 
equations must be solved, the mapping has the form

Tswa :
{

Vn+1 = |(γ Vn) − (1 + γ )ε sin(φn+1)|
φn+1 = [φn + 2Vn] mod(2π)

. (4)

The static wall approximation (swa), as quoted in the sub-index of 
mapping (4) is convenient to avoid solving transcendental equa-
tions. However, it inherently introduce a new problem that must 
be taken into account prior evolve the dynamical equations. In the 
complete version, after a collision with the moving wall, the parti-
cle, in specific cases and under certain conditions, can keep moving 
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