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We introduce a special class of random matrices (DUE) whose spectral statistics corresponds to statistics 
of microscopical quantities detected in vehicular flows. Comparing the level spacing distribution (for 
ordered eigenvalues in unfolded spectra of DUE matrices) with the time-clearance distribution extracted 
from various areas of the flux-density diagram (evaluated from original traffic data measured on Czech 
expressways with high occupancies) we demonstrate that the set of classical systems showing an 
universality associated with Random Matrix Ensembles can be extended by traffic systems.

© 2016 Elsevier B.V. All rights reserved.

Introduction

Connection between Random Matrix Ensembles and certain 
transport systems is not new (see e.g. [1] for a general overview). 
Indeed, in Refs. [2,3] authors drew the attention to the bus trans-
portation system in Cuernavaca, Mexico, where a peculiar transfer 
of information inside the system led, surprisingly, to the univer-
sal configuration of gaps among buses. In more detail: Since the 
complicated traffic conditions in Mexico work as an effective ran-
domizer the time headways among buses (if not influenced by 
any additional information) obey the exponential distribution (bus 
clustering). This is in conflict with the economic effort of drivers to 
maximize the number of transported passengers. In order to avoid 
such an unpleasant clustering effect the bus drivers engage people 
who record the arrival times of buses at significant places. Arriv-
ing at a checkpoint, the driver receives the information of when 
the previous bus passed that place. Knowing the time interval the 
driver optimizes the distance to the preceding bus by either slow-
ing down or speeding up. In such a way the obtained information 
leads to a vicarious interaction between buses and changes the 
statistical properties of the gap distribution. The rigorous study 
[4] confirmed that the detected link between Cuernavaca buses 
and Gaussian unitary ensemble (GUE) is not accidental. Authors of 
the research formulated a relevant microscopic model-scheme and 
analytically proved that the time headway distribution of buses 
conforms to the level spacing distribution for GUE. This surpris-
ing knowledge attracted an attention of scientists (e.g. [1]) since 
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systems connected to Random Matrix Theory are universal (in a 
certain sense).

Until now, natural endeavor to interconnect Random Matrix 
Theory (RMT) with vehicular systems has not led to a success. 
However, a partial progress has been achieved in [5–7,9,10] where 
proved that microscopical arrangement of vehicles can be pre-
dicted by means of a certain one-dimensional gas inspired by the 
Dyson’s gases that are well-known in RMT. Moreover, another at-
tempt to describe (analytically) a microstructure of vehicular en-
sembles with help of statistical instruments (e.g. [11–13]) led us 
to believe that our effort may be successful. Therefore, the main 
goal of this work is to find (and analyze) a new class of random 
matrices whose spectral properties correspond to a micro-structure 
of real-road traffic samples.

This paper is organized as follows. In the first section we in-
troduce and analyze the class of the so-called damped matrices 
(DUE). We are focused on the level density, the procedure of 
unfolding, and the level spacing distribution. Connection to the 
theory of one-dimensional traffic gases is discussed in the sec-
ond section. Section 3 brings in a comparison between the level 
spacing distribution of DUE matrices and the time-clearance distri-
butions extracted from expressway data samples. This is followed 
by corresponding discussion and conclusions in the final section. 
Subsidiary derivations and additional statistical tests are included 
in the mathematical Appendix.

1. DUE – damped unitary ensembles

Being inspired by the work [14] (studying Calogero–Moser 
models with various potentials) we introduce the g-parameterized 
class DUEg(N) whose N × N matrices H g = (hkj(g))N

k, j=1 fulfill the 
following axioms:
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Fig. 1. Graphs of the level density ωN (x). Histograms have been determined for five 
thousand realizations of DUE(256) matrices with parameters g = 0.2 (a northwest 
sub-figure), g = 0.5 (a northeast sub-figure), g = 1.5 (a southwest sub-figure), and 
g = 2.5 (a southeast sub-figure). Solid curve (blue)/dashed curve (magenta) repre-
sent the approximation (3) for values ε, ϑ estimated with help of CSC/KE methods, 
respectively. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

(i) the parameter g � 0 is fixed;
(ii) elements hkk(g) are chosen as independent Gaussian variables 

with zero mean and unit variance, i.e. h11(g), h22(g), . . . ,
hNN(g) � N(0, 1) are i.i.d.;

(iii) if k �= j then

hkj(g) = 2πig

N sinh[(2π(k − j)/N] , (1)

i.e. the off-diagonal elements are deterministic.

Owing to the definition the off-diagonal elements are purely 
imaginary complex numbers whose absolute value become smaller 
with distance from the diagonal. Therefore we refer such a class to 
as the Damped Unitary Ensembles. In the context of the article 
[14] the matrices in DUEg(N) represent simplified versions of the 
N × N Lax matrices derived for hyperbolic Calogero–Moser model 
(see [14] for details).

1.1. Level density for DUE matrices

Let σ(H g) be the spectrum of H g , i.e. σ(H g) = {x(k) ∈ C : k =
1, 2, . . . , N} is a set of ordered eigenvalues x(1) � x(2) � . . . � x(N) . 
Since H g = H�

g , where H�
g is Hermitian conjugated matrix, one 

finds that σ(H g) ⊂ R and therefore the above-referred ordering is 
correctly defined. Now we can introduce the probability density 
Pk(x(k)) for kth eigenvalue x(k) and the level density

ωN(x) = 1

N

N∑
k=1

Pk(x). (2)

Unfortunately, the famous Semi-Circle Law (derived in [15] for the 
level density of classical random matrix ensembles) is not applica-
ble for DUE matrices. Instead of a circular shape the level density 
of damped matrices conforms to a probability density taken from 
two-parametric family

qϑ,ε(x) = ζ(ϑ)

ε

{
exp[− ϑ2ε2

ε2−x2 ] . . . |x| < ε,

0 . . . |x| � ε,
(3)

Fig. 2. Estimates of the critical eigenvalue ε and curvature ϑ in (3). A curve and 
dashed line correspond to ε̂ and ϑ̂ obtained by CSE method. Squares and circles 
display the estimates ε̂ and ϑ̂ calculated by means of KE.

where ζ−1(ϑ) = ∫ 1
−1 exp[− ϑ2

1−x2 ] dx ensures the proper normaliza-
tion. Indeed, numerical tests show (as is illustrated in Fig. 1) that 
the level density for large N is very accurately approximated by 
the function qϑ,ε(x) for estimated values ε̂ = ε̂(g, N), ϑ̂ = ϑ̂(g, N)

of the so-called critical eigenvalue ε and curvature ϑ . Both the 
presented estimation-procedures are based on principles of MDE 
(minimum distance estimation). The first of them (CSE – chi-square 
estimator) minimizes the statistical distance

χ(ϑ,ε) =

√√√√√
+∞∫

−∞
|h(x) − qϑ,ε(x)|2 dx, (4)

where h(x) is an empirical histogram. For potential reconstructive 
purposes we are specifying that the set S consisting of 1 280 000
eigenvalues (taken from 5000 realizations of 256 × 256 matrices) 
generates the domain Dom(h) = [min(S), max(S)] of the empirical 
histogram. In our numerical tests, this domain Dom(h) has been 
divided into 200 equidistant sub-intervals.

The second statistical test is based on the standard Kolmogorov 
estimator (KE) minimizing the supremum of the absolute differ-
ence between the estimated distribution function and the empiri-
cal distribution function

H N(x) = 1

N

N∑
k=1


(x − x(k)). (5)

Here


(x) =
{

1; x > 0
0; x � 0

(6)

stands for the Heaviside step-function. The optimal values of es-
timated parameters are compared graphically in Fig. 2. Marked 
discrepancies near the origin can be attributed to the following 
facts. If g = 0 then one can trivially express the level density as 
e− x2

2 /
√

2π and our estimation procedure tries, in fact, to approxi-
mate the normal distribution by a function qϑ,ε(x). Moreover,

∀ϑ > 0 : lim
ε→0+

qϑ,ε(x) = lim
�→0+

1√
2π�

e
− x2

2�2 = δ(x),

where δ(x) ∈ D ′ is the Dirac function (see Appendix A.1). Since 
both these distributions tend (for small values of parameters) to 
the same generalized limit it is difficult to distinguish them nu-
merically. It means that estimations used (applied for small values 
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