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A bilayered t– J model is investigated with a slave boson mean field theory. A spontaneous phase 
lamination (PL) into a layer dominated by antiferromagnetism (AFM) and a layer dominated by 
superconductivity (SC) is found at a low doping density and low temperature regime. Raising the 
temperature removes the PL and SC, turns the system into a homogeneously antiferromagnetic 
(AF) bilayer, and eventually a homogeneously paramagnetic bilayer at high temperature. The PL 
circumvents the competition between AFM and SC, and may result in a higher superconducting transition 
temperature. The density of states of low energy single particle excitation in the homogeneously AF state 
at intermediate temperature is reduced by the AF scattering. The relation between this study and the 
bilayered superconducting cuprates is discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The underdoped (UD) superconducting cuprates are suscepti-
ble to instability of spatial inhomogeneity with various charge, 
spin, and orbital orders [1–4]. There can be competition between 
the orders, and inhomogeneity in the cuprates has always been 
an issue since the discovery of the compounds. The inhomo-
geneity can be directly visualized by a scanning tunneling mi-
croscopy (STM) probe [5]. When an UD cuprate is cooled down 
from a high temperature, the compound enters a pseudogaped 
state [6] in which the density of states (DOS) near the Fermi 
level is partially suppressed. The pseudogap (PG) resides at the 
antinodal regions in reciprocal space. A cuprate in the pseudo-
gaped regime possesses various kinds of the above mentioned 
inhomogeneities. A coherent d-wave superconductivity (dSC) is 
the last to appear in the course of the lowering of tempera-
ture.

The superconducting cuprates are narrow band systems, which 
may be modeled by the Hubbard type models, or in the strong 
repulsion limit by the t– J type models [7–11]. The Gutzwiller pro-
jected [12,13] t– J models are often taken as minimal models for 
the cuprates [14–16]. There is always a tendency toward an in-
tralayer phase separation (PS) in UD t– J models, regardless of the 
methodologies in the studies [17,18]. A heuristic argument based 
on a slave boson (SB) mean field theory (MFT) [19–21] for the 
PS may be given below. We argue that when the band filling or 

E-mail address: kkvoo@mail.oit.edu.tw.

particle density n is varied, the chemical potential μ does not 
monotonically depend on n. Consider a simple monolayered t– J
model with only a first nearest neighbor (NN) hopping and an 
AF Heisenberg coupling. The hopping and exchange integrals are 
taken as t = −1 and J = 1/3 respectively. The AF gap at half band 
filling (HBF) is J = 1/3. The renormalized bandwidth Bδ for a non-
magnetic state at a doping density δ = 1 − n = 0.15 is estimated 
as Bδ � 8δ = 1.2. Assuming a constant DOS, the chemical poten-
tial μ at this doping density is estimated as μ � −δBδ/2 � −0.1, 
which is within the AF gap at HBF. Therefore, we have argued that 
a chemical potential may simultaneously correspond to a nonmag-
netic state at a high doping density, and a magnetic state at a low 
doping density. This multiple correspondence is due to the large 
AF gap at HBF, and the small renormalized bandwidth at nonvan-
ishing doping densities.

Another noteworthy feature in a t– J model with a hole-like FS 
is the suppression of dSC by AFM [22]. The is due to the location of 
both of the gaps of the AFM and dSC are at the antinodal regions 
of the Fermi surface (FS), and an AFM is more effective in lowering 
the energy of a system at near HBF.

The PS instability in the t– J model may be related to the inho-
mogeneities in the UD cuprates. Analogous to an intralayer PS, in 
this paper we show that an interlayer phase lamination (PL) can 
occur in a bilayered t– J model with a weak interlayer coupling. 
A PS occurs with an intralayer interphase boundary, whereas a PL 
occurs with an interlayer interphase boundary. In a bilayered t– J
model, the competition between the dSC and AFM may be avoided 
via a PL, leading to a rise in the superconducting transition tem-
perature.
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Section 2 presents the model and our formulation. Section 3
presents the phase diagram of a bilayered t– J model on a n–T
plane, the constant volume specific heat capacity, and the low ex-
citation DOS. Section 4 discusses the result and relates it to the 
superconducting cuprates.

2. Models and formulation

We consider a t– J model defined on a bilayer of square lattices. 
The Hamiltonian reads

Ĥ = Ĥ‖ + Ĥ⊥ + Ĥc, (1)

where

Ĥ‖ =
∑
α

∑
i,j,σ

tijĉ
†
αiσ ĉαjσ +

∑
α

∑
〈i,j〉

J

(
Ŝαi · Ŝαj − n̂αin̂α,j

4

)
(2)

and

Ĥ⊥ =
∑
i,σ

t⊥
(

ĉ†
Aiσ ĉBiσ + H.c.

)
+

∑
i

J⊥
(

ŜAi · ŜBi − n̂Ain̂Bi

4

)
.

(3)

Ĥ‖ and Ĥ⊥ describe the intralayer and interlayer electronic dy-
namics respectively. Within a layer, we consider NN, second near-
est neighbor, and third nearest neighbor hopping with bare hop-
ping integrals t , t′ , and t′′ respectively; and a NN AF Heisenberg 
coupling with an exchange integral J . The intralayer electronic 
dynamics in the two layers are identical. Between the layers, we 
consider a perpendicular hopping with a bare hopping integral t⊥ , 
and a perpendicular AF Heisenberg coupling with an exchange in-
tegral J⊥ . We consider a t– J model as a Hubbard model in the 
strong repulsion limit.

The interlayer Heisenberg coupling is much smaller than the in-
tralayer Heisenberg coupling, but it can have a nonnegligible effect 
such as the finite temperature AF phase transition in the supercon-
ducting cuprates. It is also relevant to some of the results in our 
discussion (Sec. 3).

The t– J Hamiltonian in Eq. (1) is defined to act on a Gutzwiller 
projected Fock space, in which there are no doubly occupied sites. 
In a SB MFT [19–21], the nonholonomic constraint due to the 
Gutzwiller projection is transformed into a holonomic constraint 
and treated in a mean field manner. This leads to the substitutions

tijĉ
†
αiσ ĉαjσ →

√
δαiδαjtijĉ

†
αiσ ĉαjσ , (4)

and

t⊥ĉ†
Aiσ ĉBiσ → √

δAiδBit⊥ĉ†
Aiσ ĉBiσ , (5)

where δαi = 1 − 〈nαi〉 is a site doping density. The substitutions 
reflect the reduction of the kinetic energy due to the no-double 
occupancy constraint. The quartic interacting terms are decoupled 
in all channels into quadratic terms. The Heisenberg coupling is 
decoupled as

Ŝαi · Ŝβj = 1

4

∑
k=x,y,z

2∑
μ,ν,γ ,δ=1

ĉ†
αiμσ

μν
k ĉαiν · ĉ†

βjγ σ
γ δ

k ĉβjδ

→ 1

4

∑
k=x,y,z

2∑
μ,ν,γ ,δ=1

σ
μν
k σ

γ δ

k

(
〈ĉ†

αiμĉαiν〉ĉ†
βjγ ĉβjδ + ĉ†

αiμĉαiν〈ĉ†
βjγ ĉβjδ〉

− 〈ĉ†
αiμĉαiν〉〈ĉ†

βjγ ĉβjδ〉

+ 〈ĉ†
αiμĉ†

βjγ 〉ĉβjδ ĉαiν + ĉ†
αiμĉ†

βjγ 〈ĉβjδ ĉαiν〉
− 〈ĉ†

αiμĉ†
βjγ 〉〈ĉβjδ ĉαiν〉

− 〈ĉ†
αiμĉβjδ〉ĉ†

βjγ ĉαiν − ĉ†
αiμĉβjδ〈ĉ†

βjγ ĉαiν〉
+ 〈ĉ†

αiμĉβjδ〉〈ĉ†
βjγ ĉαiν〉

)
, (6)

where σμν
k is the (μ, ν) element in Pauli matrix σk . The charge 

density interaction is decoupled as

n̂αin̂βj =
∑

σ ,σ ′=↑,↓
ĉ†
αiσ ĉαiσ · ĉ†

βjσ ′ ĉβjσ ′

→
∑

σ ,σ ′=↑,↓

(
〈ĉ†

αiσ ĉαiσ 〉ĉ†
βjσ ′ ĉβjσ ′

+ ĉ†
αiσ ĉαiσ 〈ĉ†

βjσ ′ ĉβjσ ′ 〉 − 〈ĉ†
αiσ ĉαiσ 〉〈ĉ†

βjσ ′ ĉβjσ ′ 〉
+ 〈ĉ†

αiσ ĉ†
βjσ ′ 〉ĉβjσ ′ ĉαiσ + ĉ†

αiσ ĉ†
βjσ ′ 〈ĉβjσ ′ ĉαiσ 〉

− 〈ĉ†
αiσ ĉ†

βjσ ′ 〉〈ĉβjσ ′ ĉαiσ 〉 − 〈ĉ†
αiσ ĉβjσ ′ 〉ĉ†

βjσ ′ ĉαiσ

− ĉ†
αiσ ĉβjσ ′ 〈ĉ†

βjσ ′ ĉαiσ 〉 + 〈ĉ†
αiσ ĉβjσ ′ 〉〈ĉ†

βjσ ′ ĉαiσ 〉
)

. (7)

Applying the substitutions in Eqs. (4), (5), (6), and (7) to Eqs. (2)
and (3) reduces Ĥ‖ and Ĥ⊥ to SB MF Hamiltonians Ĥmf‖ and Ĥmf⊥
respectively.

While the short range Coulomb interaction has been taken into 
account by the low energy effective J and J⊥ terms, the long 
range Coulomb interaction has to be included when there is charge 
inhomogeneity. As at the interface of a semiconductor heterostruc-
ture, the long range Coulomb interaction leads to a capacitive field 
between the layers when there is an imbalance of charge in the 
layers. This field tends to restore the equality of the layer charge 
densities, and this effect is to be described by Ĥc .

We confine our discussion to an uniform charge distribution in 
a layer with 〈n̂αi〉 = nα , and include an uniform capacitive field be-
tween the layers. We approximate Ĥc by a mean field Hamiltonian

Ĥmf
c =

∑
α

∑
i

εc
αn̂αi, (8)

where the layer potentials are given by εc
A = −εc

B = V c(nA −nB)/2. 
The parameter V c is related to a particular cuprate by V c =
e2c/2εrε0ab, where a and b are the intralayer lattice constants, 
c is the interlayer lattice constant, e is the electronic charge, ε0
is the permittivity in vacuum, and εr is the relative permittiv-
ity for the interstitial space between the CuO2 layers. The elec-
tric fields due to the ionic background in the two layers cancel 
each other for they are equal in strengths but opposite in direc-
tions. For |t| = 0.3 eV and lattice constants a = b = 3.85 Å, and 
c = 3.4 Å, the dimensionless parameter V c/|t| � 140/εr . In the lit-
erature, 80 � εr � 250 has been used to fit measurement data from 
the cuprates.

The Hamiltonian Ĥ is hence reduced to a mean field Hamilto-
nian Ĥmf = Ĥmf‖ + Ĥmf⊥ + Ĥmf

c . A chemical potential μ is introduced 
to control the particle number, and we will solve a grand canonical 
Hamiltonian Ĥmf − μN̂ , where N̂ = ∑

α

∑
i n̂αi . We consider only 

real valued order parameters, and uniform and isotropic intralayer 
order parameters. Let the particle density 〈n̂αi〉 = nα , AF spin 
moment 〈 Ŝ z

αi〉 = (−1)ix+i y mα , where Ŝ z
αi = (n̂αi↑ − n̂αi↓)/2, and 

d-wave singlet superconducting pairing amplitude 〈	̂s
α,i;α,i+x̂

〉 =
−〈	̂s

α,i;α,i+ ŷ
〉 = 	s

α , where 	̂s
α,i;α,i+d = ĉαi↑ĉα,i+d,↓ − ĉαi↓ĉα,i+d,↑ . 

The particle density in layer α is nα , and the average particle den-
sity or band filling is n = (nA + nB)/2. The doping density in layer 
α is δα = 1 − nα , and the average doping density in a bilayer is 
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