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We give exact formulae for a wide family of complexity measures that capture the organization of 
hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-
form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process’s 
ε-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future 
mutual information, transient and synchronization informations, and many others. As a result, a direct 
and complete analysis of intrinsic computation is now available for the temporal organization of 
finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the 
spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex 
materials via chaotic crystallography.

© 2016 Elsevier B.V. All rights reserved.

The emergence of organization in physical, engineered, and so-
cial systems is a fascinating and now, after half a century of ac-
tive research, widely appreciated phenomenon [1–5]. Success in 
extending the long list of instances of emergent organization, how-
ever, is not equivalent to understanding what organization itself is. 
How do we say objectively that new organization has appeared? 
How do we measure quantitatively how organized a system has 
become?

Computational mechanics’ answer to these questions is that a 
system’s organization is captured in how it stores and processes 
information—how it computes [6]. Intrinsic computation was intro-
duced two decades ago to analyze the inherent information pro-
cessing in complex systems [7]: How much history does a system 
remember? In what architecture is that information stored? And, 
how does the system use it to generate future behavior?

Computational mechanics, though, is part of a long historical 
trajectory focused on developing a physics of information [8–10]. 
That nonlinear systems actively process information goes back to 
Kolmogorov [11], who adapted Shannon’s communication theory 
[12] to measure the information production rate of chaotic dy-
namical systems. In this spirit, today computational mechanics is 
routinely used to determine physical and intrinsic computational 
properties in single-molecule dynamics [13], in complex materials 
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[14], and even in the formation of social structure [15], to mention 
several recent examples.

Thus, measures of complexity are important to quantifying 
how organized nonlinear systems are: their randomness and their 
structure. Moreover, we now know that randomness and struc-
ture are intimately intertwined. One cannot be properly defined 
or even practically measured without the other [16, and references 
therein].

Measuring complexity has been a challenge: Until recently, in 
understanding the varieties of organization to be captured; still 
practically, in terms of estimating metrics from experimental data. 
One major reason for these challenges is that systems with emer-
gent properties are hidden: We do not have direct access to their 
internal, often high-dimensional state space; we do not know a 
priori what the emergent patterns are. Thus, we must “reconstruct” 
their state space and dynamics [17–20]. Even then, when success-
ful, reconstruction does not lead easily or directly to measures of 
structural complexity and intrinsic computation [7]. It gives access 
to what is hidden, but does not say what the mechanisms are nor 
how they work.

Our view of the various kinds of complexity and their measures, 
though, has become markedly clearer of late. There is a natural 
semantics of complexity in which each measure answers a specific 
question about a system’s organization. For example:

• How random is a process? Its entropy rate hμ [11].
• How much state information must be stored for optimal pre-

diction? Its statistical complexity Cμ [7].
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• How much of the future can be predicted? Its past–future mu-
tual information or excess entropy E [16].

• How much information must an observer extract to know a 
process’s hidden states? Its transient information T and synchro-
nization information S [16].

• How much of the generated information (hμ) affects future 
behavior? Its bound information bμ [21].

• What’s forgotten? Its ephemeral information ρμ [21].

And there are other useful measures ranging from degrees of ir-
reversibility to quantifying model redundancy; see, for example, 
Ref. [22] and the proceedings in Refs. [23,24].

Unfortunately, except in the simplest cases where expressions 
are known for several, to date typically measures of intrinsic 
computation require extensive numerical simulation and estima-
tion. Here we answer this challenge, providing exact expressions 
for a process’s measures in terms of its ε-machine. In particular, 
we show that the spectral decomposition of this hidden dynamic 
leads to closed-form expressions for complexity measures. In this 
way, the remaining task in analyzing intrinsic computation reduces 
to mathematically constructing or reliably estimating a system’s 
ε-machine in the first place.

Background

Our main object of study is a process P , by which we 
mean the rather prosaic listing of all of a system’s behaviors 
or realizations {. . . x−2, x−1, x0, x1, . . .} and their probabilities: 
Pr(. . . X−2, X−1, X0, X1, . . .). We assume the process is stationary 
and ergodic and the measurement values range over a finite al-
phabet: x ∈ A. This class describes a wide range of processes from 
statistical mechanical systems in equilibrium and in nonequilib-
rium steady states to nonlinear dynamical systems in discrete and 
continuous time on their attracting invariant sets.

Following Shannon and Kolmogorov, information theory gives a 
natural measure of a process’s randomness as the uncertainty in 
measurement blocks: H(L) = H [X0:L], where H is the Shannon–
Boltzmann entropy of the distribution governing the block X0:L =
X0, X1, . . . , XL−1. We monitor the block entropy growth—the average 
uncertainty in the next measurement XL−1 conditioned on know-
ing the preceding block X0:L−1:

hμ(L) = H(L) − H(L − 1)

= H[XL−1|X0:L−1]

= −
〈 ∑

xL−1∈A
p(xL−1) log2 p(xL−1)

〉
Pr(X0:L−1)

, (1)

where p(xL−1) = Pr(xL−1|x0:L−1). And when the limit exists, we 
say the process generates information at the entropy rate: hμ =
limL→∞ hμ(L).

Measurements, though, only indirectly reflect a system’s inter-
nal organization. Computational mechanics extracts that hidden 
organization via the process’s ε-machine [6], consisting of a set 
of recurrent causal states S = {σ 0, σ 1, σ 2, . . .} and transition dy-
namic {T (x) : T (x)

i, j = Pr(x, σ j |σ i)}x∈A . Each causal state represents 
a collection of “equivalent” histories—equivalent in the sense that 
each history belonging to an equivalence class yields the same pre-
diction over futures. The ε-machine is a system’s unique, minimal-
size, optimal predictor from which two key complexity measures 
can be directly calculated.

The entropy rate follows immediately from the ε-machine as 
the causal-state averaged transition uncertainty:

hμ = −
∑
σ∈S

Pr(σ )
∑
x∈A

Pr(x|σ) log2 Pr(x|σ) . (2)

Here, the causal-state distribution Pr(S) is the stationary distri-
bution 〈π | = 〈π |T of the internal Markov chain governed by the 
row-stochastic matrix T = ∑

x∈A T (x) . The conditional probabilities 
Pr(x|σ) are the associated transition components in the labeled 
matrices T (x)

σ ,σ ′ . Note that the next state σ ′ is uniquely determined 
by knowing the current state σ and the measurement value x—a 
key property called unifilarity.

The amount of historical information the process stores also fol-
lows immediately: the statistical complexity, the Shannon–
Boltzmann entropy of the causal-state distribution:

Cμ = −
∑
σ∈S

Pr(σ ) log2 Pr(σ ) . (3)

In this way, the ε-machine allows one to directly determine two 
important properties of a system’s intrinsic computation: its infor-
mation generation and its storage. Since it depends only on block 
entropies, however, hμ can be calculated via other presentations; 
though not as efficiently. For example, hμ can be determined from 
Eq. (2) using any unifilar predictor, which necessarily is always 
larger than the ε-machine. Only recently was a (rather more com-
plicated) closed-form expression discovered for the excess entropy 
E using a representation closely related to the ε-machine [22]. 
Details aside, no analogous closed-form expressions for the other 
complexity measures are known, including and especially those for 
finite-L blocks, such as hμ(L).

Mixed-state presentation

To develop these, we shift to consider how an observer repre-
sents its knowledge of a hidden system’s current state and then 
introduce a spectral analysis of that representation. For our uses 
here, the observer has a correct model in the sense that it repro-
duces P exactly. (Any model that does we call a presentation of 
the process. There may be many.) Using this, the observer tracks 
a process’s evolution using a distribution over the hidden states 
called a mixed state η ≡ (

Pr(σ 0),Pr(σ 1),Pr(σ 2), . . .
)
. The associ-

ated random variable is denoted R. The question is how does 
an observer update its knowledge (η) of the internal states as it 
makes measurements—x0, x1, . . .?

If a system is in mixed state η, then the probability of 
seeing measurement x is: Pr(X = x|R = η) = 〈η|T (x)|1〉, where 
〈η| is the mixed state as a row vector and |1〉 is the column 
vector of all 1s. This extends to measurement sequences w =
x0x1 . . . xL−1, so that if, for example, the process is in statistical 
equilibrium, Pr(w) = 〈π |T (w)|1〉 = 〈π |T (x0)T (x1) · · · T (xL−1)|1〉. The 
mixed-state evolution induced by measurement sequence w is: 
〈ηt+L | = 〈ηt |T (w)/〈ηt |T (w)|1〉. The set R of mixed states that we 
use here are those induced by all allowed words w ∈ A∗ from 
initial mixed state η0 = π . For each mixed state ηt+1 induced 
by symbol x ∈ A, the mixed-state-to-state transition probability 
is: Pr (ηt+1, x|ηt) = Pr (x|ηt). And so, by construction, using mixed 
states gives a unifilar presentation. We denote the associated set 
of transition matrices {W (x)}. They and the mixed states R define 
a process’s mixed-state presentation (MSP), which describes how an 
observer’s knowledge of the hidden process updates via measure-
ments. The row-stochastic matrix W = ∑

x∈A W (x) governs the 
evolution of the probability distribution over allowed mixed states.

The use of mixed states is originally due to Blackwell [25], 
who expressed the entropy rate hμ as an integral of a (then un-
computable) measure over the mixed-state space R. Although we 
focus here on the finite mixed-state case for simplicity, it is in-
structive to see in the general case the complicatedness revealed 
in a process using the mixed-state presentation: e.g., Figs. 17(a)–(c) 
of Ref. [26]. The Supplementary Materials give the detailed calcu-
lations for examples in the finite case.
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