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Nonlinear propagation of dust-ion-acoustic (DIA) waves is investigated in a one-dimensional, unmagne-
tized plasma containing positive ions, negative ions, trapped electrons featuring vortex-like distribution, 
and immobile dust grains having both positive and negative charges. Via reductive perturbation method, 
Agrawal’s method, and Euler–Lagrange equation, the time-fractional Schamel–KdV equation under the 
sense of Riesz fractional derivative is derived to describe nonlinear behavior of DIA waves. The 
approximate solution of the time-fractional Schamel–KdV equation is constructed in terms of Jacobi 
elliptic functions by variational iteration method. The effect of the plasma parameters on the DIA solitary 
waves is also discussed in detail.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the applications of fractional differential equa-
tions have gained increasing attention in plasma physics. Because 
of the presence of dispersive and/or dissipative forces, the physi-
cal processes are non-conservative in the real plasma system [1]. 
The classical treatments of the forces are the integer-order differ-
ential equations, which means these conservative descriptions are 
not convenient to treat the non-conservative physical processes. 
It is well-known that the fractional calculus, one of the general-
izations of the classical calculus, represents the non-conservative 
forces and possesses non-local property. Therefore, the fractional 
differential equations play an important role in describing the 
non-conservative physical processes in the plasma. For example, 
El-Wakil and coauthors [2] studied the electron-acoustic solitary 
waves in a homogeneous system and derived the time-fractional 
KdV equation. The theoretical results with α ≈ 0.78 (α is the order 
of the fractional derivative) are in agreement with the structures 
of the broadband electrostatic noise observed by Viking satellite in 
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the dayside auroral zone. For more theoretical investigations on the 
applications of fractional differential equations in plasma physics, 
see Refs. [3–8].

The pair-ion plasmas, consisting of positive- and negative-
charged ions with an equal mass, have become a hot topic because 
of their wide range of potential applications in astrophysics, space, 
and laboratory plasmas system [9–12]. Because of the absence of 
the annihilation, the collective behavior in the pair-ion plasma sys-
tem can be experimentally studied under controlled conditions. 
Another feature of pair-ion plasma is that positive and negative 
ions respond to a potential in the same time scale [9]. In the lab-
oratory, Oohara and Hatakeyama [13] successfully generated the 
pair-ion plasma consisting of equal mass, positive and negative 
fullerene ions (C±

60). This work revealed that such plasma sys-
tem can support three kinds of collective behaviors including low-
frequency ion acoustic wave, high-frequency ion plasma wave, and 
the intermediate frequency wave. After the pioneering experimen-
tal investigations on the electrostatic waves in pair-ion plasmas, 
a number of theoretical works have been presented to study the 
elementary properties as well as linear and nonlinear collective 
phenomena in such plasmas [14–17].

It is well-known that the dust grains are ubiquitous in most 
space and astrophysical plasma system, as well as in the laboratory 
plasmas. When the dust grains are immersed into a plasma sys-
tem, they can be charged either negatively or positively depending 
on the ambient environments [18]. The presence of such extremely 
massive and highly charged dust grains can modify the characteris-
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tics of the normal waves and introduce new eigenmodes. The dust-
ion-acoustic (DIA) wave, as one of the modified dusty modes, was 
theoretically proposed by Shukla and Silin [19] and experimen-
tally confirmed by Barkan et al. [20]. Since the study of DIA waves 
can provide new insights into the localized electrostatic perturba-
tions in space and laboratory plasma, considerable research efforts 
have been devoted to investigating the features of DIA waves in 
the plasma containing charged dust grains [21–23].

It is indicated that nonlinear propagation of plasma waves is 
strongly influenced by the velocity distribution functions of elec-
trons. In the past few decades, Maxwellian velocity distribution 
was the most commonly used distribution. However, in the case 
of deviation from the isothermality, it is a possibility that groups 
of electrons have different temperatures where the Maxwellian ve-
locity distribution is not applicable. In such plasma system, the 
electrons can be trapped and satisfy vortex-like distribution [24,
25]. Several authors [26–30] have already reported that the pres-
ence of trapped electrons can introduce a strong nonlinearity into 
the plasmas and change the structures of nonlinear plasma waves 
such as solitons, shocks, etc. For example, Alinejad [26] showed 
that the trapped electrons can support solitary waves with only 
compressive structures.

The aim of this letter is to investigate the nonlinear propagation 
of DIA waves by using the time-fractional Schamel–KdV equation 
in a five-component plasma consisting of positive ions, negative 
ions, positively charged immobile dust grains, negatively charged 
immobile dust grains, and trapped electrons featuring vortex-
like distribution. In Sec. 2, we present a set of fluid equations 
for the theoretical model. Using reductive perturbation method, 
Agrawal’s method, and Euler–Lagrange equation, we derive the 
time-fractional Schamel–KdV equation for DIA waves. In Sec. 3, we 
solve the time-fractional Schamel–KdV equation by variational it-
eration method and discuss the effect of the plasma parameters on 
the DIA solitary waves. Finally, conclusions are given in Sec. 4.

2. Theoretical model and time-fractional Schamel–KdV equation

2.1. Theoretical model

We consider a one-dimensional, collisionless, and unmagne-
tized plasma whose constituents are positive ions, negative ions, 
trapped electrons, and stationary dust grains of opposite polarity 
(i.e., positively as well as negatively charged dust grains). Because 
the thermal speed of electrons is much larger than that of ions, 
we ignore the electron inertia and use the vortex-like distribution 
function to model the velocity distribution of electrons. In addi-
tion, we ignore the dynamics of charged dust grains because they 
are too heavy to move on the time scale of DIA waves. The dy-
namics of DIA waves in such plasma system can be described by 
the following set of normalized continuity, momentum, and Pois-
son equations.

For positive ions, the normalized fluid equations are

∂np
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+ ∂(npup)
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= 0, (1)
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For negative ions, we have
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The above four equations are coupled through the Poisson 
equation

∂�2
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= ηne + nn − βnp + σ − δ. (5)

The normalized electron number density is
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For � � 1, the above distribution function can be expanded as
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where b = 1√
π

(1 − γ ), the parameter γ = Tef /Tet is the ratio of 

temperature of free and trapped electrons, Tef and Tet are the 
free and trapped electron temperatures, respectively. Note that 
β < 0 represents a vortex-like excavated trapped electron distri-
bution. In the above normalized equations, the electric poten-
tial �, space x, and time t are normalized by κB Tef /e, the De-
bye length λD = (κB Tef /4πnpe2)1/2, and the inverse ion plasma 
frequency ω−1

pi = (4πnpe2/mp)−1/2, respectively. The number den-
sity n j ( j = p, n, or e for positive ions, negative ions, or electrons, 
respectively) is normalized by the equilibrium value n j0. And u j
( j = p or n) is the fluid velocity of each species normalized by 
the positive ion sound velocity C p = (κB Tef /mp). Here, κB is the 
Boltzmann constant, e the electronic charge, mp the positive ion 
mass, μ = mn/mp . From the charge neutrality condition at equilib-
rium, ne0 + nn0 + Z−n−0 = np0 + Z+n+0, we obtain 1 + η + σ =
β + δ with η = ne0/nn0, σ = Z−n−0/nn0, and δ = Z+n+0/nn0. 
Here, ne0, nn0, np0, n−0, and n+0 stand for the equilibrium densi-
ties of electrons, negative ions, positive ions, negatively charged 
dust grains, and positively charged dust grains, respectively.

2.2. Time-fractional Schamel–KdV equation

To investigate the small but finite amplitude DIA waves in our 
plasma system, we employ the reductive perturbation method [31]
to Eqs. (1)–(6). We introduce the following stretched coordinates

ξ = ε
1
4 (x − Vt), τ = ε

3
4 t, (7)

where 0 < ε � 1 is a small parameter measuring the weakness of 
the dispersion, and V is the phase velocity normalized by C p . We 
expand the dependent variables in the power series of ε as follows⎛⎜⎜⎜⎝
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Substituting Eqs. (7) and (8) into Eqs. (1)–(6) and collecting the 
terms in different powers of ε , we obtain the following relations 
for the lowest order in ε:

np1 = μ�1

V 2
, nn1 = −�1

V 2
, up1 = μ�1

V
, un1 = −�1

V
. (9)

In addition, the phase velocity V can be expressed as

V = ±
√

μ + μη + μσ − μδ + 1

η
. (10)
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