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In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and 
graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due 
to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in 
this direction, there may exist localized anharmonic transverse modes with the frequencies above the 
spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal 
(chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. 
Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical 
and numerical calculations it may exceed 1010 periods. We call these vibrations as transverse intrinsic 
localized modes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is a well-known fact that point defects in crystals may cause 
an appearance of spatially localized vibrations, called local modes 
(see, e.g. [1]). The frequency of such modes lies outside the phonon 
spectrum, which prevents the spreading of the vibrations to the 
bulk. Besides, resonant or pseudolocal modes with the frequencies 
inside the phonon spectrum may also exist. They appear when the 
frequency of the leading vibration associated with the defect gets 
to a region of small density of states (DOS) of phonons. Unlike 
local modes, which are stable in harmonic approximation, these 
modes can live only a finite time due to the emission of resonant 
phonons. However, because of the small DOS of resonant phonons 
the interaction of the latter with pseudolocal mode is weak, due 
to that the lifetime of the mode becomes long. A well-known case 
of long-living pseudolocal modes in 3D lattices is the one by the 
defect of large mass [1].

Spatially localized modes may exist also in perfect nonlinear 
lattices. Such modes in chains with cubic and quartic anharmonic-
ity were first described by A.M. Kosevich and A.S. Kovalev [2]. 
They have found that for sufficiently strong quartic anharmonicity 
there exist vibrational states localized in the space and periodic in 
time; the frequency of these vibrations exceeds the maximum fre-
quency of phonons. The authors [2] restricted their consideration 
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with large-size vibrations and the frequency close to the top of the 
phonon spectrum. Small size localized vibrations in anharmonic 
lattices were introduced by Dolgov [3] and then by A.J. Sievers and 
S. Takeno [4] and were called “intrinsic localized modes” (ILMs).

In the numerical studies of ILMs different two-body potentials 
(Lennard–Jones, Born–Mayer–Coulomb, Toda, and Morse potentials 
and their combinations) have been used (see, e.g. [5–7]). All these 
potentials have strong odd anharmonicities and show a strong soft-
ening with the increasing of the vibrational amplitude. The ILMs 
found in these simulations always drop down from optical band(s) 
into the phonon gap, if there is any. In this connection see Ref. [8], 
where gap ILMs in NaI were calculated without taking into account 
long-range interactions and Ref. [9], where the calculations of ILMs 
in NaI were made taking these interactions into account.

Usually in crystal lattices odd anharmonicities are strong and 
pair potentials show a strong softening with the increase of vibra-
tional amplitude. Therefore, the dropping down of the frequency of 
ILMs from optical bands is quite common in 3D lattices. Still, as it 
was shown in Refs. [10–13], in some crystals odd anharmonicities 
are reduced due to multiparticle or covalent interactions. Exam-
ples have been given with germanium [10], diamond [11], metallic 
Ni, Nb [12], iron [13] and copper [11]; in all these crystals ILMs 
with frequencies above the top of the phonon band were found in 
numerical simulations.

However, there are systems in which the odd anharmonici-
ties disappear due to symmetry arguments; at the same time, 
the quartic anharmonicity is nonzero and it is hard (positive). 
The examples of such systems are given by linear atomic chains 
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and planar atomic structures (e.g. graphene); in these systems odd 
anharmonicities disappear for vibrations in the transverse (out-of-
chain and out-of-plane) direction. Therefore, one can expect that in 
these systems there can exist transverse anharmonic local modes 
with the frequencies above the maximum frequency of the corre-
sponding phonons. The latter frequencies are usually smaller than 
the maximum frequency of longitudinal/in-plane phonons. These 
modes fall in resonance with these phonons and can decay. How-
ever, unlike pseudolocal modes and like local modes the interac-
tion causing the decay of these modes is anharmonic. Therefore 
we call them as transverse ILMs (TILMs). The anharmonic inter-
action of TILMs with small vibrational amplitudes of atoms is very 
weak. Hence, one can expect that the lifetime of such TILM may be 
rather long. Below we will consider TILMs in a monatomic chain 
and in graphene, both analytically and numerically. Our considera-
tions confirm the aforesaid expectation.

2. Anharmonic chain

First we consider the anharmonic monatomic chain and exam-
ine the vibrations of its atoms in transverse (y) directions. We sup-
pose that the potential energy U of the chain is given by the sum 
of pair potentials V (Rn,n′), where Rn,n′ is the distance between the 
atoms n and n′ . The latter potentials can be expanded into the se-
ries of atomic displacements. Denoting d = (n − n′) a, x = xn − xn′ , 
y = yn − yn′ , where a is the atom spacing, xn and yn are the longi-
tudinal and transverse displacements of the atom number n from 
its equilibrium position, we get R ≡ Rn,n′ = √

(d + x)2 + y2. As y 
appear as y2, any power expansion of R will have only even pow-
ers of y. The same holds for U . This means that U indeed has no 
odd anharmonic terms. This is a consequence of the symmetry of 
the chain with respect to the change of the sign of y.

Note one more property of the chain: the term in the expan-
sion of R , quadratic with respect to y, has the same numerical 
factor as the term linear with respect to x. The same holds also 
for an arbitrary power of R . In the equilibrium state all linear 
terms with respect to the coordinates x in the potential energy U
are cancelled. Therefore, all quadratic terms with respect to y are 
also cancelled, i.e. the frequencies of transverse vibrations in the 
pair potential approximation tend to zero. As a result long-range 
fluctuations can be created with little energy cost and since they 
increase the entropy they are favored. This leads to the instabil-
ity of the chain with respect to small transverse distortions (see in 
this connection the Mermin–Wagner theorem [14]).

To get the chain stable one needs to stretch it [15]. In this case 
the atom spacing a is replaced by a + s, where s is stretching. Then 
the terms in U linear with respect to x and y2 are not cancelled 
any more. Therefore, the elastic springs for transverse vibrations 
are also nonzero and positive. This results in the appearance of 
transverse phonons with finite, although small for small stretching 
maximum frequency ωtm . As these phonons do not have any cubic 
anharmonicity, but have nonzero positive quartic anharmonicity, 
low-frequency TILMs with the frequency above the spectrum of 
transverse phonons should exist here.

Let us consider the TILM in a monatomic chain with the Morse 
pair potential

V = D(1 − eα(a−r))2. (1)

Here D is the energy of dissociation, α is the parameter. We are 
using dimensionless coordinates with the units corresponding to 
a = 1 and the value α = 4 of the Morse pair potentials of atoms in 
monatomic metals. For this potential only nearest-neighbor inter-
actions are essential and only these potentials will be taken into 
account here. We also take for the mass units the mass of the 
atoms of the chain (M = 1). The dissociation energy is chosen so 

that the unit frequency will correspond to the maximum frequency 
of longitudinal phonons. In this case the potential energy of the 
stretched lattice is the sum of the following pair potentials (up to 
a constant term):

V =
(

1 − e−4(r−1)
)2

/
128 − x

(
1 − e−4s

)
e−4s

/
16, (2)

where r = √
(x + 1 + s)2 + y2. The last term in Eq. (2) accounts 

for the effect of the stretching force of the chain in x direction – 
it changes the equilibrium distance of the atoms from r = 1 to 
r = 1 + s. Let us expand the potential into the series of x and y and 
take into account up to the second-order terms with respect to x
and forth-order terms with respect to y. We get (up to a constant)

V (x, y) ≈ ν1

8
x2 + ν2

8
sy2 + ν3

8
xy2 + ν4

32
y4, (3)

where νi are dependent on stretching s parameters. In the small 
s limit νi ≈ 1. If s = 0.05 then ν1 ≈ 0.522, ν2 ≈ 0.707, ν3 ≈ 0.463, 
ν4 ≈ 0.441.

The pair potential of the longitudinal vibrations alone is given 
by the first term in the right-hand side of Eq. (3). Vibrational fre-
quencies of corresponding phonons equal [1]

ωk = √
ν1 (1 − cos (k)) /2. (4)

The maximum frequency of longitudinal phonons corresponds to 
k = −π and equals ωlm = √

ν1. The transverse vibrations alone are 
described by the pair potential

V (0, y) = ν2s

8
y2 + ν4

32
y4 . (5)

In harmonic approximation (ν4 = 0) the frequencies of correspond-
ing phonons are given by Eq. (4) with ν2s instead on ν1. The 
positive quartic anharmonicity in Eq. (5) leads to appearance of the 
anharmonic modes [2] (called here as TILMs) with the frequencies 
ω0 = ωtm

√
1 + ε2

/
4 above the maximum frequency of transverse 

phonons ωtm = √
ν2s and with the displacements

yn(t) ≈ (−1)n A0 cosh−1(εn) cos(ω0t) . (6)

Here A0 is the amplitude of the central atom,

ε = √
3ν4 A0

/
ωtm (7)

is the reversed size of the TILM (we use the discrete analog of 
the derived in Ref. [2] equation (47) for the difference in the dis-
placements of two neighboring atoms χ(x)). These modes interact 
with longitudinal phonons and, therefore, they decay. To describe 
this decay we consider the longitudinal vibrations of atoms in the 
presence of the TILM. Taking into account Eq. (6) we replace y by 
y(t) in Eq. (3) and get the following pair potential for this motion:

V (x, t) ≈ ν1

8
x2 + ν3

16
xy2(0) + ν3

16
xy2(0) cos(2ω0t). (8)

The first term in the right-hand side of this equation gives the 
potential energy of the longitudinal vibrations alone in harmonic 
approximation. The second and the third terms describe the an-
harmonic interaction of these and transverse vibrations. At that 
the second term stands for a small local compression, while the 
third term describes the force with the frequency 2ω0 periodically 
changing in time. For all longitudinal phonons, except those with 
the resonant frequency ωk = 2ω0, this force causes forced vibra-
tions of atoms with the frequency 2ω0. The resonant term causes 
the increase of the energy of phonons in time. From energy con-
servation law it follows that this energy comes from the TILM, i.e. 
the TILM decays.
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