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A one-dimensional model for resonator-based acoustic metamaterials is introduced. The condition for
band gap in such kind of structure is obtained. According to this condition, the dispersion relation is in
general a result of the scattering phase and propagating phase. The phenomenon that the band gap is
less dependent on lattice structure appears only in the special system in which the coupling between the
resonators and the host medium is weak enough. For strong coupled systems, the dispersion of wave can

be significantly adjusted by the propagating phase. Based on the understanding, a general guide for band
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gap optimization is given and the mechanism for structures with the defect states at subwavelength scale
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1. Introduction

The propagation of acoustic wave in periodic structure has at-
tracted much attention in the past decades. These composite mate-
rials are of special interest because they may give rise to acoustic
band gaps (BGs). Because the waves inside can be strongly dis-
persed or completely reflected when their frequencies are close
to or inside the BGs, these structures can be used to control the
wave-field, and some novel wave phenomena and special utilities,
such as the waveguide [1-4], superlens and negative refraction [5,
6], can be realized.

The early studied structure for acoustic BG material, which is
named as phononic crystal [7], is constructed by inserting scatter-
ers into a uniform host medium. Because of the structural peri-
odicity, the mechanism of BGs in such kind of structures can be
explained naturally as the Bragg scattering of waves. This kind
of BGs are usually opened in the frequency region within which
the wavelength is comparable to the lattice constant. The followed
investigations show that a structure with periodically arranged res-
onators can also have BGs [8]. Contrasted to BGs in PC structure,
the BGs in the resonator-based structure can appear in a low fre-
quency region in which the corresponded wavelength is much
greater than the period. Based on this feature, the structures are
usually described by the effective medium theory and some abnor-
mal effective parameters, such as negative effective mass density
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[9] and/or negative effective elastic modulus [10-12], can be ob-
tained. In this sense, the composites are named specially as meta-
materials, which means they are not readily observed in natural
materials.

To understand the mechanism for such kind of BGs, many in-
vestigations have been performed [13-16]. But because most of
those researches were concentrated on the systems working at
deep subwavelength scale, the retarded phase of the wave in back-
ground was usually neglected. As a result, a conclusion that the
appearance of BG can be independent on the periodicity of the
structure [13-17] was obtained. It can be found however that this
conclusion is not valid for all of the structures. For example, it is
shown in Ref. [18] that the position of the BGs will be very sen-
sitive to the lattice constant when the resonant frequency of the
resonant units goes into a relatively higher frequency region. And
in Ref. [3], it is shown that, very similar to the defect mode in
phononic crystal, a confined state at subwavelength scale can also
be obtained by breaking locally the translational symmetry of the
structure. Those phenomena show clearly that the retarded phase
of the background wave can change obviously the dispersion of the
resonator-based system in some cases.

To give a general understanding of the wave behavior in the
resonator-based system, we present a one-dimensional model in
which the retarded phase of the wave in background is taken into
considered. By this model, we find that the permitted modes in
the resonator-based structure can exist only when the summation
of the propagating and the scattering phase satisfies a special con-
dition, where the former refers to the retarded phase shift of the
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wave propagating in background and the later is the abrupt phase
change when it is scattered by the resonator. Based on these un-
derstanding, we not only give a general guide for BG optimization
but also reveal the mechanism of the defect modes at subwave-
length scale.

2. General condition for one-dimensional resonator-based
periodic structure

A typical resonator-based one-dimensional model can be con-
structed by periodically side-connecting resonators on a one-
dimensional uniform host waveguide. It can be a small uniform
tube with side-connected Helmholtz cavities for acoustic wave
[19], or a metal waveguide with split-ring resonators for electro-
magnetic wave [20], or a taut string with spring-mass resonators
for mechanical wave [21]. By the Bloch theory and transfer matrix
method, the dispersion relation for those systems takes the form
as

cosqa = coska — g sinka, (1)

where a is the lattice constant, q is the Bloch wave vector, k = %,
with @ and ¢ as the angular frequency and the speed of the
wave propagating in the uniform host, and p is a parameter re-
lated to the impedance ratio between the one-dimensional uni-
form medium and the resonator. For simplicity, we will take the
taut spring with spring-mass resonators as example in the follow-
ing discussion.

By defining the elastic constant and mass of the resonator as
y and m, and the mass density and the tension of the string as
p and T, respectively, we can specify the parameter p in Eq. (1)
as p= —2YC 11, where ¢ = /T/p is the wave speed in uni-

lfwz/wg
form background, wg = /y/m is the resonant frequency of the
spring-mass resonator, and @ = % is the mass ratio between the
resonator and string, respectively.

One may find that such a dispersion relationship has been
solved mathematically in Ref. [21], in which the edge frequen-
cies of the lowest BG are determined by the intersections between
the p, 2cot QT” and —2tan QT’T curves, where Q = ¢ is the non-
dimensional frequency. However, it can be found that the physical
origin for the BG mechanism is still unclear, even though the BGs
can be precisely predicted by their method.

We find that, by the condition cosqa < 1, which means a propa-
gating wave must has a real Bloch wave vector, a relation between

p and ka can be obtained alternatively as

sin(2a + ka) sinka <0 (2)
with
2
2
cosa = — 4 sina:4p (3)

/p4+4p2 /p4+4p2
where ka is obviously the retarded phase of the wave propagating
in the host medium, and «, which will be proved in the follows,
is the abrupt phase change when the wave is scattered by the res-
onator.

To show that « is the scattering phase from the resonator, we
need to consider a system with one resonator connected from the
left- and right-hand sides by two half-infinite taut strings. For inci-
dent waves from left-hand side with harmonic form y; = e!kx+®D,
the scattered wave in the left- and right-hand sides of the res-
onator can be written as

Vo= Sei(ka+a)t) (4)

and

Ysr = (14 S)elkxten, (5)

where S is the amplitude of the scattered wave.
By using the continuum condition of the force at the point
where the resonator is connected, we have

ikT(1—-S)=ikT(1+S)+ f, (6)

where f is the reacting force from the resonator, which satisfies
9%u

mewZ—V[U—U-FS)], (7

where u is the displacement of the mass of the resonator.
By eliminating u in Eq. (7) and then substituting the result into
Eq. (6), we can finally get the scattering amplitude

ip Vpr+4p?

S= = e, 8
2—ip p?+4 (8)
where o« satisfies cosa = _\/pijpZ and sina = ﬁ, which

means it is exactly the same one as in Eq. (2).
For system working in the subwavelength scale, we always have
sinka > 0, then Eq. (2) is simplified as

sin(2e +ka) <0, 9)

which means a harmonic mode is permitted when (2n + 1) <
20 +ka<2(n+1)m withn=0,1,2,---.

From Eq. (9), we can find that the condition for the lowest
BG is 2w < 2« + ka < 37, which is the cooperated result of the
propagating and the scattering phase. Notice that the conditions
2« + ka = 2w and 2« + ka = 37w are mathematically equivalent
to p= 2cotQT” and p = —2tan QT” respectively, the edges of the
lowest BG by our condition will be the same as those by Ref. [21].

To show intuitively the contributions of o and ka to the lowest
BG, we give in Fig. 1(a) and (c) the curves of o as functions of the
reduced frequency w/wq. For Fig. 1(a), we keep wpa/mc =0.5 to
be constant but set & = 0.05, 0.4 and 1.5, respectively. While for
Fig. 1(c), we keep u =1 to be constant but set wpa/mc =0.05, 0.3
and 0.5 respectively. To show the BGs, their corresponding curves
of 2o + ka are also plotted in Fig. 1(b) and (d) respectively, in
which BGs are shown by the thin line segments. It can be seen
from the figure that generally o increases from 7 /2 to m and
then to an asymptotic value of 377 /2 when w increases from 0 to
wp and then to infinity respectively. For all of the curves, we have
o =71 at w = wg. From the curves, it can be easily found that
the lower edge of BG will always be reached before wg because
of the contribution of ka. As for the upper edge of BG, because
3w /2 is the asymptotic value of « (see the definition of p and
o, or the curves in the figure), it can be reached, i.e., the condi-
tion 2« + ka = 37 is satisfied, only when the contribution of ka is
taken into considered.

Another interesting phenomenon can be found in the figure is
that the shape of a curve is very sensitive to p and wpa/c. We
can see from Fig. 1(a) (Fig. 1(c)) that, by keeping woa/mc (1) un-
changed but decreasing at the same time u (wopa/mc), the curve
becomes sharper and sharper when it crosses through wg. To un-
derstand this behavior, we need to check the quality factor of a
resonator connected to the infinite taut string. By setting y; =0
and eliminating S in Egs. (5), (6) and (7), we can get a disper-
sion relation for the resonator as w? — iJfw — w3 = 0, which
means the behavior of such a resonator can be described by the

standard equation ‘fj%‘ + 28% + w%u =0 for the isolated damp-

ing resonator. Consequently, the quality factor can be defined as
Q=% = % = m With this analogy and definition, we
can understand the phenomenon easily: resonator with a larger

quality factor (caused here by smaller wpa/mc or p) has always a
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