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We study the algebraic structure of an integrable Hubbard–Shastry type lattice model associated with 
the centrally extended su(2|2) superalgebra. This superalgebra underlies Beisert’s AdS/CFT worldsheet R-
matrix and Shastry’s R-matrix. The considered model specializes to the one-dimensional Hubbard model 
in a certain limit. We demonstrate that Yangian symmetries of the R-matrix specialize to the Yangian 
symmetry of the Hubbard model found by Korepin and Uglov. Moreover, we show that the Hubbard 
model Hamiltonian has an algebraic interpretation as the so-called secret symmetry. We also discuss 
Yangian symmetries of the A and B models introduced by Frolov and Quinn.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Exactly solvable models of strongly correlated electrons are of 
great importance in theoretical condensed matter physics. For in-
stance, they play a prominent role in understanding high-Tc su-
perconductivity. The key example of such a model is the one-
dimensional Hubbard model introduced in [1]. It describes the 
dynamics of interacting electrons in a one-dimensional lattice that 
models the conduction band of a solid. Each site in the lattice can 
have four different states. It can be vacant, occupied by a spin up 
or down electron or occupied by an electron pair.

The Hubbard Hamiltonian H = ı
∑

i Kii+1 + h̄
∑

i Vi for the in-
finite lattice is written in terms of the usual creation and annihi-
lation operators c†

iα , ciα , with α = ↑, ↓, of electrons with spin up 
and down. Here

Kii+1 :=
∑

α=↑,↓
(c†

iαci+1,α + c†
i+1,αciα), Vi := (ni↑ − 1

2 )(ni↓ − 1
2 ),

where niα := c†
iαciα is the number operator, i ∈ N enumerates lat-

tice sites, ı := √−1 and h̄ is the coupling constant.
The integrability of the Hubbard model is known since the 

works of Lieb and Wu [2]. However, the R-matrix was only found 
much later by Shastry [3]. Given an integrable model, the R-
matrix can usually be found from the underlying symmetries of 
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the model. Such symmetries of the Hubbard model were unknown 
until very recently.

The Hubbard model was long known to have an exact so(4) =
(su(2) ⊕ su(2))/Z2 symmetry [4,5] that can be extended to a cer-
tain Yangian [6]. Nevertheless, this was not sufficient to determine 
Shastry’s R-matrix and it was suspected that there are more sym-
metries underlying the Hubbard model.

The answer to this question of the full symmetry algebra of 
the Hubbard model came from an unexpected area – the super-
string theory. The R-matrix of the Hubbard model emerges in the 
prime example of the AdS/CFT correspondence as the worldsheet 
R-matrix [7–10]. It is the intertwining matrix for fundamental rep-
resentations of the centrally extended su(2|2) superalgebra. We 
will denote this superalgebra by g. Interestingly, this superalgebra 
has a non-standard Yangian extension, which is also a symmetry of 
the R-matrix [11]. An exceptional feature of this Yangian is that it 
has an additional generator, which has no counterpart in g, called 
the secret symmetry [12]. The complete Yangian symmetry is an 
infinite-dimensional superalgebra of a novel type [13].

In this letter we consider an integrable one-dimensional lattice 
model by identifying each site of the lattice with the fundamen-
tal module of g. This gives an integrable Hubbard–Shastry type 
model which specializes to the Hubbard model in a certain limit. 
Such generalized models were first considered in [14] and [15]. 
We call this model the general model. (For an overview see Sec-
tion 12.4 in [16].) Likewise, there are three other parity invariant 
lattice models that follow from the general model – the A and B 
models of Frolov and Quinn [17] and the Essler–Korepin–Schoutens
(EKS) model [18].
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We construct an oscillator realization of g, its Yangian exten-
sion and the R-matrix, and discuss the integrable structure of the 
general model and its specializations. In particular we shed more 
light on the symmetries of the Hubbard model and obtain the spin 
Yangian symmetry of the Hubbard model [6] as a certain special-
ization of the Yangian of g. Moreover, we show that the Hubbard 
Hamiltonian is a specialization of the secret symmetry. We also 
obtain Yangian symmetries of the A and B models.

This letter is organized as follows. We first introduce the neces-
sary notation, the setup of the lattice, and the algebra g. We then 
construct an oscillator realization of g and its Yangian extension, 
which allows us to compute the R-, Lax- and transfer matrices of 
the general model. In the remaining sections we discuss links with 
the A, B and EKS models, the Hubbard model limit, and prove the 
aforementioned results.

2. Oscillators and vector spaces

Oscillator algebra We consider a one-dimensional lattice with L ∈
N sites that can be occupied by spin- 1

2 particles. Each lattice site 
is identified with a four-dimensional Z2-graded vector space V i ∼=
C

2|2 spanned by vectors

V i = spanC{ |0〉i, |↓〉i, |↑〉i, |↑↓〉i },
where 1 ≤ i ≤ L is the index of the site in the lattice. The entire 
lattice is the L-fold tensor product V := ⊗L

i=1 V i . The vector |0〉i
is the vacuum (i.e. a hole at the ith site), |↑〉i and |↓〉i are spin 
up and spin down particles, and |↑↓〉i is a multi-particle state oc-
cupied by a pair of spin up and spin down particles. The grading 
is 1 for vectors |↑〉i and |↓〉i , and 0 otherwise. To describe such a 
lattice, we introduce the usual free-fermion oscillator algebra gen-
erated by c†

iα and ciα with 1 ≤ i, j ≤ L and α, β = ↑, ↓, that satisfy 
the standard (anti)commutation relations

{ciα, c jβ} = 0, {c†
iα, c†

jβ} = 0, {c†
iα, c jβ} = 1 δi jδαβ.

We will denote the universal enveloping algebra of a single copy 
the oscillator algebra by Osci . Likewise, Osci j(k... ) will denote the 
universal enveloping algebra of i j(k . . . ) copies of the oscillator al-
gebra. For ease of notation, we identify the unit 1 of the oscillator 
algebra with the unit 1 of the ground field C. Upon identification

|α〉i := eıφα ic†
iα |0〉i, |↑↓〉i := eı(φ↑+φ↓)ic†

i↑c†
i↓|0〉i (2.1)

and requiring ciα |0〉i = 0, the space V i becomes a left Osci -
module; here ı := √−1 and φα ∈C are arbitrary phases.

Matrix representation Let Eab ∈ End(V i), with 1 ≤ a, b ≤ 4, be the 
usual graded matrix units satisfying

[Eab, Ecd] = δbc Ead − (−1)(ā+b̄)(c̄+d̄)δad Ecb,

(Eab ⊗ Ecd)(Eij ⊗ Ekl) = (−1)(c̄+d̄)(ī+ j̄)Eab Eij ⊗ Ecd Ekl,

where 1̄ = 4̄ = 0 and 2̄ = 3̄ = 1 is the grading. A matrix represen-
tation of the oscillator algebra is given by the map πi : Osci →
End(V i) so that

ci↓ 
→ eıφ↓ i(E12 − E34), ci↑ 
→ eıφ↑i(E13 + E24),

c†
i↓ 
→ e−ıφ↓ i(E21 − E43), c†

i↑ 
→ e−ıφ↑i(E31 + E42),

ni↓ 
→ E22 + E44, ni↑ 
→ E33 + E44. (2.2)

The additional phases φα in the expressions above are required to 
make the Hamiltonian and the R-matrix of the model manifestly 
invariant (i.e. without additional twists or similarity transforma-
tions) under the standard spin and charge symmetries. This will 
be explained in detail in Section 4. For subsequent reference we 
also set (−)↓ := 1 and (−)↑ := −1, (−)↑↓ := −1.

3. Superalgebra

Superalgebra We recall the definition of g due to [8]. By [·, ·] we 
will denote the graded commutator [a, b] = ab − (−1)āb̄ba for any 
elements a and b in the superalgebra. The bar − : g → Z2 de-
notes the degree of the element under the Z2-grading. We will 
call grade 0 elements bosonic. Likewise, grade 1 elements will be 
called fermionic.

The centrally extended superalgebra su(2|2) is generated by el-
ements Ea , Fa , Ha , with a = 1, 2, 3, and central elements P and K
subject to the following defining relations:

[Ha, Eb] = Aab Eb, [Hi, F j] = −Aab Fb,

[Ea, Fb] = δab Da Ha, [E1, E3] = 0, [F1, F3] = 0,

[Ec, [Ec, E2]] = 0, [Fc, [Fc, F2]] = 0,

[[E1, E2], [E3, E2]] = P , [[F1, F2], [F3, F2]] = K (3.1)

for a, b = 1, 2, 3 and c = 1, 3. Here D = diag(1, −1, −1) is the 
normalization matrix and A is the Cartan matrix given in the 
appendix. Dynkin nodes 1 and 3 are bosonic; Dynkin node 2 is 
fermionic. Consequently, the Z2-grading is 1 for E2, F2 and is 0
otherwise.

Local oscillator realization Fix a complex number h̄ (this will be 
the coupling constant of the model). To each site we associate a 
spectral parameter ui , so that the lattice is parametrized by �u =
(u1, u2, . . . , uL) and h̄.

To obtain a realization of g we introduce a function x(u) and 
parameters x±

i defined by [7]

x(ui) := 1

2

(
ui +

√
u2

i − 4

)
, x±

i := x(ui ± 1
2 h̄)±1. (3.2)

The parameters x±
i are Zhukovsky variables satisfying

x+
i + 1

x+
i

− x−
i − 1

x−
i

= h̄, x+
i + 1

x+
i

+ x−
i + 1

x−
i

= 2ui .

Then, for each site, we introduce the local weights

ai = γi√
h̄
, bi = ν2

i − 1√
h̄ γi

, ci = γi√
h̄ x+

i

, di = x+
i (ν2

i − 1)√
h̄ ν2

i γi
,

where ν2
i = x+

i /x−
i and γ 2

i = νi(x+
i − x−

i ). Local weights describe 
the fundamental representation of g at each site.1

A local oscillator realization of g is given by the map ηi : g →
Osci such that (for a = 1, 2, 3)

Ea 
→ Ei,a, Fa 
→ Fi,a, Ha 
→Hi,a,

P 
→ Pi, K 
→Ki, C 
→ Ci, (3.3)

where

Ei,1 = eı(φ↑+φ↓)ic†
i↑c†

i↓, Fi,1 = e−ı(φ↑+φ↓)ici↓ci↑,

Ei,3 = eı(φ↑−φ↓)ic†
i↑ci↓, Fi,3 = eı(φ↓−φ↑)ic†

i↓ci↑,

Ei,2 = e−ıφ↑ i((ai − bi) ci↑ni↓ + bi ci↑), Pi = aibi,

Fi,2 = eıφ↑i((di − ci) c†
i↑ni↓ + ci c†

i↑), Ki = cidi,

Hi,1 = ni↑ + ni↓ − 1, Hi,3 = ni↓ − ni↑,

Hi,2 = −Ci − 1
2Hi,1 − 1

2Hi,3, Ci = 1
2 (aidi + bici) (3.4)

1 The fundamental representation of g is a four-dimensional atypical cyclic (non-
highest weight) representation. See sections 2.3 and 2.4 in [8] for more details.
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