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We propose an indirect method based on an adaptive technique for analyzing the chaos behavior 
of a general quantum system with complex nonlinear evolution. Using this method, we design an 
identification function that effectively recognizes the uncertain parameters in a chaotic quantum system 
only by measuring the system outputs. As an example, we study an atom ensemble in an optical cavity 
and we obtain a specific parameter identification scheme after analyzing the chaos behaviors. We also 
verify the accuracy of the identification scheme using numerical simulations and we discuss the influence 
of different types of errors on the accuracy.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chaotic phenomena are ubiquitous in nature and they have ex-
tensive applications in classical physics. Since Poincaré first found 
random-like solutions of deterministic equations [1], chaos theory 
has developed rapidly in a series of research studies. In particular, 
the Li–Yorke theorem [2] and Takens’ study [3] have described the 
mathematical characteristics of chaos, as well as providing exper-
imental schemes for applying the chaos effect. In recent years, it 
has been reported that chaos theory has been applied widely and 
successfully in the domain of classical physics [4–6].

Consistent with classical physics, in 1982, Fishman et al. indi-
cated that chaos effects may also exist in quantum systems [7]. 
According to their definition, quantum chaos can be treated as the 
exponentially rapidly growing distance of quantum phase space 
trajectories, where the mechanical quantities can exhibit random-
like characteristics in the classical limit. Subsequently, chaos be-
haviors have been found in many quantum systems based on in 
depth studies, such as cavity quantum electrodynamics (QED) sys-
tems [8,9], optomechanical systems [10], gas-phase atoms [11], 
and spin chain models [12]. In addition to the correspondence 
with classical dynamical evolution in microcosmic physics, chaos 
behavior can also have good correlations with some unique prop-
erties of quantum mechanics. For instance, Furuya et al. noted that 
quantum entanglement can reach its maximum in a cavity QED 
system when chaos effects appear [13]. Later, this conclusion was 
extended to other entanglement systems, including other quan-
tum correlations [14]. Moreover, it has been proved that quantum 
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chaos will emerge when the quantum systems are in the vicinity of 
the transition point of a quantum transition, during the quantum 
squeezing process, or in a quantum decoherence process [15,16]. 
These phenomena indicate that quantum chaos may be a macro-
scopic reflection of quantum effects and some quantum effects that 
are not easy to observe directly can be investigated by analyzing 
quantum chaos.

In the general case, there are two main explanations for the 
occurrence of quantum chaos: a significant nonlinear quantum ef-
fect exists in the system (e.g., Bose–Einstein condensation [9,17], 
parametric down-conversion [18], and quantum squeezing [16]), or 
the parameters of the system become unstable and unpredictable 
due to the complexity of the system itself and external distur-
bances. The latter case is usually known as uncertain chaos [19,20]. 
In contrast to the ideal model, uncertain chaos abounds because 
complex multi-body effects and coupling with the environment 
are inevitable in an actual quantum system, which makes it more 
difficult to analyze uncertain chaos systems than normal systems. 
In previous studies, quantum chaos has been used to characterize 
quantum systems in a qualitative manner by establishing a sim-
ple homology relationship between chaos and the other properties 
of the system. However, few studies have investigated chaos quan-
titatively, and thus systems cannot be described accurately when 
chaos appears.

In this letter, we propose an indirect method for analyzing 
quantum chaos. Our main aim is to determine some properties 
of a system only by considering the chaotic outputs. Therefore, 
we employ an adaptive technique to design a recognition func-
tion, which can effectively avoid the sensitivity and uncertainty of 
chaotic evolution. After giving the general formalism of the recog-
nition function, we also design a specific scheme as an example 
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to demonstrate the capacity for chaos identification in an atom 
ensemble system. According to subsequent discussion of the im-
plementation conditions, we consider that this scheme is accurate 
and feasible for use in experiments.

2. Parameter identification

2.1. General formalism

A general dynamic system can always be characterized by some 
key parameters (pi ), and a correlation can also be established be-
tween these parameters and the mechanical quantities (Xi ) of the 
system. For a normal system without chaos, this correlation will be 
a determined function described by the evolution equations (D), 
i.e., D(pi) = (X1, . . . , Xi). In a practical experiment, some un-
measurable parameters can be obtained via the inverse function 
pi = D−1(X1, . . . , Xi). However, it is more complicated to realize 
the idea above when chaos appears, although a similar relationship 
C(pi) = (X1, . . . , Xi) can also be obtained by dynamics analysis. 
Considering that chaotic quantity is a random-like solution that 
is highly sensitive to the initial conditions and parameters, then 
C−1(X1, . . . , Xi) does not even exist because of the nonlinear evo-
lution equations.

Fortunately, a chaotic system is not completely uncontrollable. 
Studies of adaptive techniques have shown that chaotic quantities 
can achieve synchronization in certain conditions even if each of 
them is sensitive and irregular. Recently, similar conclusions have 
also been discussed for quantum systems [21,22], which allows us 
to propose a new form of parameter identification, i.e., if a defined 
recognition function where variables are measurable quantities of 
the system can finally synchronize with the parameter that we 
want to identify, then we can obtain this parameter instead of an-
alyzing the insoluble C−1.

In this section, we explain how to design a general formula 
for a recognition function p̃(t) to satisfy the requirement that 
p̃(t) → p when t → ∞. To achieve this, we define an auxiliary 
function V (p̃, p) as follows:

V (p̃, p) = |p̃ − p|2 (1)

We can easily verify that V � 0, and V = 0 is tenable only at 
p̃ = p. If we suppose that p̃ and p are both real numbers for sim-
plicity, then Eq. (1) can be further processed as:

V̇ = 2( ˙̃p − ṗ)(p̃ − p) = −2P(t, X1, . . . , Xi)[p̃ − p]2 (2)

by setting

˙̃p − ṗ = −P(t, X1, . . . , Xi)[p̃ − p]. (3)

In this expression, P(t, X1, . . . , Xi) is a designed function that 
comprises time and the measurable quantities of the system. This 
is only a mathematical auxiliary function without physical limit, 
so P(t, X1, . . . , Xi) can be formally taken as a product of the time 
function ϕ(t) and measurable quantities function F(X1, . . . , Xi) by 
separating the variables. If P(t, X1, . . . , Xi) = ϕ(t)F(X1, . . . , Xi) is 
defined as positive definite, then we can ensure that V̇ � 0 un-
der the condition of V � 0. In this case, V (p̃, p) is a so-called 
Lyapunov function, which can ensure that p̃(t) → p with the evo-
lution of time [23]. Thus, Eq. (3) can be treated as the basic config-
uration of the recognition function. Note that p is a constant that 
satisfies ṗ = 0, so we can obtain the final version based on Eq. (3):

˙̃p(t) = −ϕ(t)F(X1, . . . , Xi)[p̃(t) − p] (4)

and Eq. (4) is the basis of the following calculations.

Fig. 1. Two types of atom ensembles coupled with a single-mode radiation field in 
a resonant cavity. Some atoms (green) interact with the radiation field via a perfect 
matching frequency ω, whereas others (red) do not interact because of detuning 
�. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

2.2. Example based on a cavity QED system

To illustrate our result, we employ a cavity QED system as a 
straightforward example, which is an interface where light and 
matter interact. In Fig. 1, a sketch is provided in order to introduce 
the system considered in a convenient manner. We show that the 
total number of atoms is N , among which n1 atoms interact with 
the radiation field. First, to demonstrate the capacity for parame-
ter identification, we analyze the dynamic evolution of this chaotic 
system. The total Hamiltonian of our system can be given as fol-
lows by neglecting the interactions among atoms:

Htotal = H F +
n1∑

i=1

Hi +
n2∑
j=1

H ′
j (n1 + n2 = N), (5)

where H F = ω(a†a + 1/2) is the Hamiltonian of the radiation field 
(in unit of h̄ = 1). Correspondingly,

Hi = 1

2
ωiσzi + λσxi(a + a†) + β[a2 + (a†)2 + aa† + a†a] (6)

and

H ′
j = 1

2
ω jσ

′
zj (7)

are the Hamiltonian of an interacted atom and a free atom. In 
Eqs. (5)–(7), a† and a are the creation and annihilation opera-
tors of the radiation field, respectively. σi refers to the Pauli op-
erator of the ith atom, which satisfies the commutation relation 
[σxi, σyi′ ] = δii′ iσzi . The third term in Eq. (6) describes a feedback 
effect on the radiation field created by interacting atoms, which 
will disappear when the atoms do not interact with the field, as 
shown by Eq. (7) [24].

Using Eq. (5), we can obtain the following Heisenberg equations 
via iċ(t) = [c(t), Htotal], where c(t) refers to the operator in this 
equation. Then, the operators that describe the radiation field will 
satisfy:

ȧ + ȧ† = −iω(a − a†)

ȧ − ȧ† = −i(ω + 4n1β)(a + a†) − 2iλ
n1∑

i=1

σxi (8)

and the operator equations of the atoms are:

⎧⎨
⎩

σ̇xi = −ωiσyi

σ̇yi = ωiσxi − 2λ(a + a†)σzi

σ̇zi = 2λ(a + a†)σyi

,

⎧⎪⎨
⎪⎩

σ̇ ′
xj = −ω jσ

′
yj

σ̇ ′
yj = ω jσ

′
xj

σ̇ ′
zj = 0

(9)

Mean approximation is acceptable in our model because we con-
sider an ensemble that comprises a large number of particles 
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