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We consider second-order spatial correlation with entangled and classical light in the far-field. The 
quantum theory of second-order spatial correlation is analyzed, and the role of photon statistics and 
detection mode in the second-order spatial correlation are discussed. Meanwhile, the difference of 
second-order spatial correlation with entangled and classical light sources is deduced.
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1. Introduction

Quantum optics was considered to be born in 1956 with the 
work of Hanbury Brown and Twiss [1,2]: To measure the di-
ameters of stars, they measured the cross-correlations in the 
photocurrent fluctuations recorded by two separated detectors. 
Such phenomenon can be explained by the classical theory with 
the fluctuating electric field. Meanwhile, Glauber proposed quan-
tum formulation of optical coherence theory in 1963 which can 
explain the phenomenon of Hanbury Brown–Twiss (HBT) experi-
ments [3,4].

As a hot aspect of quantum coherence theory in recent years, 
second-order spatial correlation attracts more and more attentions 
due to its novel physical peculiarities, and many potential applica-
tions in practice, such as ghost imaging, ghost interference and so 
on [5–14]. In 1995, the second-order spatial correlation effect was 
observed experimentally using entangled photon pairs generated 
by spontaneous parametric down-conversion (SPDC) [5,6]. Later, 
the second-order cross-correlation of entangled light source with 
a large number of photons was formulated [7]. Then, Abouraddy et 
al. discussed the role of entanglement in second-order spatial cor-
relation, and found that entanglement is a prerequisite for achiev-
ing the spatial correlation effect [8]. However, it was soon dis-
covered that second-order spatial correlation can also be achieved 
with some classical light sources, and many features of the spatial 
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correlation with entangled light can be mimicked by these classical 
light sources [9–14]. Meanwhile, the difference in the fundamen-
tal physics of second-order spatial correlation with entangled and 
classical light sources is still a very lively debate [15–18].

Recently, the spatial correlation effects of statistically indepen-
dent light sources have been studied [19–21]. In this paper we 
consider second-order spatial correlation of statistically dependent 
and independent light sources, entangled and classical light, in the 
far-field with the configurations described in Refs. [19–21]. Based 
on the quantum coherence theory, second-order spatial correla-
tion of entangled and classical light is studied. The difference of 
second-order spatial correlation in the far-field with different light 
sources: entangled and classical light is analyzed. In addition, as a 
key issue of second-order correlation function, the difference of the 
visibility in second-order correlation functions with entangled and 
classical light sources is deduced, and the effects influencing the 
visibility are analyzed. These analytical results will contribute to 
understand the difference of second-order spatial correlation with 
entangled and classical light sources.

2. Second-order correlation function with entangled and 
classical light

In this section, we consider M identical sources located at po-
sitions �R1 to �R M as shown in Fig. 1. Two detectors measure the 
light field at the Fourier plane of the light source, then the electric 
field at position �rN (N = 1, 2) can be written as
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Fig. 1. Setup to measure second-order spatial correlation in the far-field. M identical 
sources are located at positions �R1 to �RM , and separated by a distance d. Two de-
tectors measuring the photons scattered by the light sources are located at positions 
�r1 and �r2 in the far-field, respectively.

E(+)
N (�rN) ∝

M∑
m=1

eiφmN am, (1)

where am denotes the annihilation operator at the position �Rm , 
and φmN denotes the optical phase accumulated by a photon emit-
ted at �Rm (m = 1, 2, · · · , M) and the position �rN relative to a 
photon emitted at the origin:

φmN = −k
�rN · �Rm

rN
= −mkd sin θN , (2)

where k denotes the wave vector of the light source. In this sit-
uation, second-order correlation function in the far-field can be 
obtained [3,4]:

G(�r1,�r2) = Tr[ρE(−)
1 (�r1)E(−)

2 (�r2)E(+)
2 (�r2)E(+)

1 (�r1)], (3)

where ρ denotes the density matrix describing the M sources.

2.1. Quantum description of entangled and classical light

The starting point of our analysis is the quantum description of 
entangled and classical light sources. The state of entangled light 
is considered as a pure state [7]:

|ψ〉e =
M∏

m=1

∞∑
n=0

cn|n, �Rm〉S |n, �Rm〉I , (4)

where the subscript e denotes entangled light, |n, �Rm〉S/I is the 
Fock state with n photons at point �Rm of the beam S/I , and cn

is the probability amplitude of Fock state with n photons. In the 
entangled light case, we consider two situations: (1) The beams S
and I are in different polarizations, and the light from entangled 
light source is divided into two beams with different polarizations. 
Then, the two detectors detect the photons of the two beams with 
different polarizations; (2) The beams S and I are in the same 
polarizations, and the light from entangled light source is divided 
into two beams, measured by two detectors. Meanwhile, the state 
of classical light can be described as a mixed state [22]:

ρc =
M∏

m=1

∞∑
n=0

pn|n, �Rm〉〈n, �Rm|, (5)

where the subscript c denotes classical light, and pn is the proba-
bility of the Fock state with n photons |n, �Rm〉.

2.2. Second-order correlation function in the far-field

The physical picture of second-order correlation function in 
the far-field can be explained by the two-photon quantum paths 

Fig. 2. Schematic representation for the two-photon quantum paths of the M iden-
tical sources. There are two types of two-photon quantum paths: a. the first line, 
the two photons are scattered by only one light source; b. the second line, the two 
photons are emitted by two different light sources.

[23,24]. It can be obtained from Eq. (1) that each of the two detec-
tors measures a photon which has been scattered from any of the 
M identical sources. Thus, we can obtain M2 two-photon quan-
tum paths which is shown in Fig. 2. Furthermore, we can sort the 
M2 two-photon quantum paths to two different types: a. the two 
photons are scattered by only one light source, which leads to the 
M quantum paths in the first line of Fig. 2; b. the two photons 
are emitted by two different light sources, corresponding to the 
M(M − 1) quantum paths depicted in the second line of Fig. 2. 
Given an initial state, there are two basic rules for calculating 
the second-order spatial correlation function: 1. If the two-photon 
quantum paths processes lead to the same final states, then these 
processes are indistinguishable. To obtain the probability, one must 
add the probability amplitudes of these processes and take the 
absolute square. 2. If the processes lead to different final states, 
then these processes are distinguishable. The probability can be 
obtained to add the probabilities of these processes.

In the situation of entangled light, second-order correlation 
function in the far-field can be written as

Ge(�r1,�r2) =
∣∣∣E(+)

1 (�r1)E(+)
2 (�r2)|ψ〉e

∣∣∣2

∝
∣∣∣∣∣

M∑
m=1

ei(φm1+φm2)aS
maI

m|ψ〉e

∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
M∑

m, j=1
m �= j

ei(φm1+φ j2)aS
maI

j|ψ〉e

∣∣∣∣∣∣∣
2

, (6)

where the first term in the right hand of Eq. (6) gives the M quan-
tum paths depicted in the first line of Fig. 2, and the second term 
is the M(M − 1) quantum paths depicted in the second line of 
Fig. 2. In the situation that the beams S and I of entangled light 
are in different polarizations, the two detectors detect the photons 
of the two beams with different polarizations, then we can obtain

Ged(�r1,�r2) ∝ [M2 K (φ11 + φ12) − M] ·
∣∣∣∣∣

∞∑
n=0

c∗
ncn+1(n + 1)

∣∣∣∣∣
2

+ M〈n2〉e + M(M − 1)〈n〉2
e , (7)

where the subscript ed denotes entangled light with the two 
beams in different polarizations, and 〈nq〉e, (q = 0, 1, 2, · · · ) de-
notes 

∑∞
n=0 nq|cn|2. Moreover, the function K (φ11 +φ12) is an anti-

correlation term:

K (φ11 + φ12) = sin2[M(φ11 + φ12)/2]
M2 sin2[(φ11 + φ12)/2] . (8)

However, when the beams S and I of entangled light are in the 
same polarizations, the two detectors detect the photons with the 
same polarizations, it results to
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