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Quantum coherence sets the quantum speed limit for mixed states
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We cast observable measure of quantum coherence as a resource to control the quantum speed limit 
(QSL) for unitary evolutions. For non-unitary evolutions, QSL depends on that of the state of the system 
and environment together. We show that the product of the time bound and the coherence (asymmetry) 
or the quantum part of the uncertainty behaves in a geometric way under partial elimination and 
classical mixing of states. These relations give a new insight into the quantum speed limit. We also 
show that our bound is experimentally measurable and is tighter than various existing bounds in the 
literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In quantum mechanics, a basic and fundamental goal is to 
know how to influence a system and control its evolution so as 
to achieve faster and controlled evolution. Quantum mechanics 
imposes a fundamental limit to the speed of quantum evolution, 
conventionally known as quantum speed limit (QSL) [1,2]. With 
the advent of quantum information and communication theory, 
it has been established as an important notion for developing 
the ultra-speed quantum computer and communication channel, 
identification of precision bounds in quantum metrology [3–5], 
the formulation of computational limits of physical systems [6–8], 
the development of quantum optimal control algorithms [9], non-
equilibrium thermodynamics [10,11]. The first major result in this 
direction was put forward by Mandelstam and Tamm [12] in 1945 
to give a new perspective to the energy-time uncertainty rela-
tion. For pure orthogonal initial and final states evolving under the 
Hamiltonian H , the bound is given by

τ⊥ ≥ h̄

�H
. (1)

In this paper, we address three basic and fundamental questions. 
There have been rigorous attempts to achieve more and more 
tighter bounds and to generalize them for mixed states [13–36]. 
But we are yet to know (i) what is the ultimate limit of quantum 
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speed? (ii) Can we measure this speed of quantum evolution in the 
interferometry by measuring a physically realizable quantity? Most 
of the bounds in the literature are either not measurable in the 
interference experiments or not tight enough. As a result, they can-
not be effectively used in the experiments on quantum metrology, 
quantum thermodynamics, quantum communication and specially 
in Unruh effect detection etc., where a small fluctuation in a pa-
rameter is needed to detect. Therefore, a search for the tightest yet 
experimentally realizable bound is a need of the hour [37].

It will be much more interesting, if one can relate various prop-
erties of the states or operations, such as coherence, asymmetry, 
dimension and quantum correlations etc. with QSL. Although these 
understandings may help us control and manipulate the speed of 
communication, apart from the particular cases like the Josephson 
Junction [38] and multipartite scenario [39], there has been little 
advancement in this direction. Therefore, the third question we ask 
is: (iii) Can we relate such quantities with QSL? In this paper, we 
address these fundamental questions and show that quantum co-
herence or asymmetry plays an important role in setting the QSL.

Quantum coherence on the other hand has taken the central 
stage in research, especially in quantum biology [40–43] and quan-
tum thermodynamics [44–48] in the last few years. And in quan-
tum information theory, it is a general consensus or expectation 
that it can be projected as a resource of classically impossible 
tasks [49–52]. This has been the main motivation to quantify and 
measure coherence [49,50,53]. Moreover, it is the main resource 
in the interference phenomenon. Various quantities, such as visi-
bility and various phases in the interferometry are under scanner 
and the investigation is on to probe various quantum properties 
or phenomena, such as Unruh effect [54–57], quantum speed limit 
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[58], quantum correlation [59] using such quantities in quantum 
interferometry [60–64]. A proper study of quantum coherence may 
provide further insight into the development of new techniques to 
probe such quantum processes in the interferometry.

Here, we consider a new notion of Fubini–Study metric for 
mixed states introduced in [65]. For unitary evolutions, it is noth-
ing but the Wigner–Yanase skew information [66], which only 
counts for the quantum part of the uncertainty [52] and a good 
measure of quantum coherence [50,67] or asymmetry [68–71], 
which classifies coherence [72] as a resource. Using this metric, we 
derive a tighter and experimentally measurable Mandelstam and 
Tamm kind of QSL for unitary evolutions and later generalize for 
more general evolutions. And thus, we set a new role for quantum 
coherence or asymmetry as a resource to control and manipulate 
the evolution speed.

An important question in the study of quantum speed limit may 
be how it behaves under classical mixing and partial elimination 
of states. This is due to the fact that this may help us to properly 
choose a state or evolution operator to control the speed limit. In 
this paper, we tried to address this question.

In the next section, we introduce the Fubini–Study metric for 
mixed states along a unitary orbit for our convenience.

2. Metric along unitary orbit

Let HA denotes the Hilbert space of the system A. Suppose that 
the system A with a state ρ(0) evolves to ρ(t) under a unitary 
operator U = eiHt/h̄ . Even if the system is in a mixed state, the 
purified version of the state must evolve gauge invariantly satis-
fying the Schrödinger equation of motion. Therefore, the distance 
between the initial and the final state must be U (1) gauge in-
variant along the parameter t . To derive such a distance along 
the unitary orbit, we consider the purification of the state in the 
extended Hilbert space and define the Fubini–Study (FS) metric 
for pure states. We know that this is the only gauge invariant 
metric for pure states. We follow the procedure as in [65] to de-
rive a gauge invariant metric for mixed states from this FS metric 
for pure states. If we consider a purification of the state ρ(0) in 
the extended Hilbert space by adding an ancillary system B with 
Hilbert space HB as |�AB(0)〉 = (

√
ρ(0)V A ⊗ V B)|α〉 ∈ HA ⊗ HB , 

the state at time t , must be |�AB(t)〉 = (
√

ρ(t)V A ⊗ V B)|α〉 =
(U A

√
ρU †

A V A ⊗ V B)|α〉, where |α〉 = ∑
i |i A iB〉 and V A , V B are uni-

tary operators on the subsystems A and B respectively. The FS 
metric for a state |ψ〉 on the projective Hilbert space can be de-
fined as

ds2
F S = 〈dψprojec|dψprojec〉, (2)

where |dψprojec〉 = |dψ〉√〈ψ |ψ〉 − |ψ〉〈ψ |
〈ψ |ψ〉3/2 |dψ〉. This is nothing but the 

angular variation of the perpendicular component of the differen-
tial form |dψ〉. The angular variation of the perpendicular compo-
nent of the differential form for the state |�AB (t)〉 in this case is 
given by

|d�ABprojec(t)〉 = dt(Aρ − Bρ)|α〉, (3)

where Aρ = (∂t
√

ρ(t)V A ⊗ V B), Bρ = |�AB(t)〉〈�AB(t)|Aρ . There-
fore, the FS metric [65] is given by

ds2
F S = 〈d�ABprojec(t)|d�ABprojec(t)〉

= dt2[〈α|(A†
ρ Aρ − A†

ρ Bρ − B†
ρ Aρ + B†

ρ Bρ)|α〉]
= Tr[(∂t

√
ρt)

†(∂t
√

ρt)] − |Tr(
√

ρt∂t
√

ρt)|2, (4)

where the second term on the last line becomes zero if monotonic-
ity condition is imposed [65].

Now, suppose that the state of the system is evolving unitar-
ily under U = eiHt/h̄ and at time t , the state ρ = ρ(t) = Uρ(0)U †. 
We know that square-root of a positive density matrix is unique. 
If we consider ρ(0) = ∑

i λi |i〉〈i|, then ρ = ∑
i λi U |i〉〈i|U † im-

plies √ρ = ∑
i

√
λi U |i〉〈i|U † = U

√
ρ(0)U † and uniqueness of the 

positive square-root implies the uniqueness of the relation. One 
can show this in an another way by considering arbitrary non-
hermitian square-root w of the final state ρ and using the relation 
ρ = w w† = Uρ(0)U † = U

√
ρ(0)

√
ρ(0)U † = U

√
ρ(0)V † V

√
ρ(0)U †, 

where V is arbitrary unitary operator. Thus, one gets the form 
of these arbitrary non-hermitian square-roots as w = U

√
ρ(0)V †. 

Due to uniqueness of the positive square-root of the positive den-
sity matrix, hermiticity condition imposes uniqueness on the ar-
bitrary unitary operators above as V = U . Thus, we get √

ρ =
U

√
ρ(0)U †, which in turn implies ∂

√
ρ

∂t = i
h̄ [√ρ, H]. Using this re-

lation and Eq. (4), we get (dropping the subscript FS)

ds2 = −dt2

h̄2
[Tr[√ρ, H]2] = 2

dt2

h̄2
Q (ρ, H). (5)

The quantity −[Tr[√ρ, H]2] = 2Q (ρ, H) in Eq. (5) is nothing but 
the quantum part of the uncertainty as defined in [52] and comes 
from the total energy uncertainty (�H)2 on the pure states |�AB〉
in the extended Hilbert space HA ⊗ HB . The quantity is also re-
lated to the quantum coherence of the state [50]. By integrating 
the distance, we get the total distance between the initial state 
|�AB(0)〉 and the final state |�AB (τ )〉 as

s =
τ∫

0

ds = 1

h̄

√
−Tr[√ρ1, H]2τ , (6)

where we have considered the Hamiltonian H to be time indepen-
dent and ρ(0) = ρ1. Here, we see that the distance between the 
two pure states on the extended Hilbert space can completely be 
written in terms of the state ρ1 and the Hamiltonian H ∈ S(HA), 
the space of all linear operators belongs to the subsystem A and 
can also be interpreted as a distance between the initial state 
ρ1 and the final state ρ(τ ) = ρ2. Again, we can define the total 
distance in an another way by considering the Bargmann angle be-
tween the initial state and the final state as

s0 = 2 cos−1 |〈�AB(0)|�AB(τ )〉|
= 2 cos−1 Tr(

√
ρ1

√
ρ2)

= 2 cos−1 A(ρ1,ρ2), (7)

where the quantity A(ρ1, ρ2) = Tr(
√

ρ1
√

ρ2) is also known as 
affinity [73] between the states ρ1 and ρ2.

3. Quantum speed limits for unitary evolution

Mandelstam and Tamm in [12] showed that the (twice of the) 
total distance between two pure states measured by integrating 
the infinitesimal distance from the initial to the final state (6) is 
greater than the distance defined by the Bargmann angle between 
the two states as in (7), i.e., 2s ≥ s0. The inequality, in particular, 
in this case becomes

τ ≥ h̄√
2

cos−1 A(ρ1,ρ2)√
Q (ρ1, H)

= Tl(ρ1, H,ρ2). (8)

This shows that the quantum speed is fundamentally bounded by 
the observable measure of quantum coherence or asymmetry of 
the state detected by the evolution Hamiltonian. If an initial state 
evolves to the same final state under two different evolution oper-
ators, the operator, which detects less coherence or asymmetry in 
the state slows down the evolution. As a result, it takes more time 
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