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The nonlinear and dynamic accommodating capability of time domain models makes them a useful 
representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the 
modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive 
model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case 
studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems 
demonstrate that the proposed modeling methodology exhibits better prediction performance from 
different viewpoints (short term and long term) compared to some other existing methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most familiar examples of low-dimensional chaotic flows occur 
in systems having one or more saddle points. Such saddle points 
allow homoclinic and heteroclinic orbits and the prospect of rigor-
ously proving the chaos when the Shilnikov condition is satisfied. 
Furthermore, such saddle points provide a means for locating any 
strange attractors by choosing an initial condition on the unstable 
manifold in the vicinity of the saddle point. Such attractors have 
been called “self-excited,” and they are overwhelmingly the most 
common type described in the literature.

Recently, many new chaotic flows have been discovered that 
are not associated with a saddle point, including ones without any 
equilibrium points, with only stable equilibria, or with a line con-
taining infinitely many equilibrium points [1–18]. The attractors 
for such systems have been called “hidden attractors” [19–30], and 
that accounts for the difficulty of discovering them since there is 
no systematic way to choose initial conditions except by extensive 
numerical search. Hidden attractors are important in engineering 
applications because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure like a bridge or 
aircraft wing.
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In this work we propose a new method for predicting the global 
behavior of chaotic flows with hidden attractors. It is known that 
the long-term prediction of chaotic time series is not possible due 
to the sensitive dependence on initial conditions [31] and that 
their prediction is much more difficult than for static/algebraic sys-
tems [32]. However it is still useful to find a model which can 
provide short-term prediction or can reproduce the geometrical 
properties of a chaotic system, such as the shape of the strange 
attractor.

Different approaches have been used for chaotic signal predic-
tion. Fuzzy Function (FF) systems represent one of the recent inter-
esting soft computing approaches used in various applications such 
as modeling, classification, and prediction [33]. Turksen introduced 
this type of fuzzy structure [33–35] which is simpler compared to 
neuro-fuzzy rule-based systems. The multidimensional input space 
of FFs leads to an elimination problem due to the projection onto 
each axis. This is one of the main differences between multidi-
mensional structures and rule-based structures [36]. Consequently, 
the obtained membership values besides the input variables are 
used to estimate fuzzy functions. Different regression methods 
like Least Square Estimation (LSE) [35], Multi Adaptive Regression 
Spline (MARS) [37], and Support Vector Machine (SVM) [38] can 
be used to estimate these functions.

With the addition of recurrent structures to a model responding 
to memory information based on prior system states, a significant 
increase in addressing the temporal sequence capability can be 
achieved [39–44]. In this way, some literature exists on the combi-
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nation of recurrent structures and fuzzy systems in two categories 
of local and global feedback. Juang et al. [41] employed local-rule 
feedback and took advantage of a variable-dimension Kalman fil-
ter for learning. Lin et al. [40] introduced recurrent self-evolving 
neuro-fuzzy networks that have a local and global link in the ag-
gregation step. Ganjefar and Toghi placed a single neuron with a 
mother wavelet activation function and local feedback in each rule 
to achieve better results by modifying the learning algorithm es-
pecially in on-line applications [42]. Tellez et al. based on passivity 
theory and by the use of an online recurrent layer, introduced in-
verse optimal controllers which are trained by an extended Kalman 
filter [45]. Theocharis implemented recurrent structure with a con-
text node in the form of an FIR synaptic filter and achieved en-
hanced temporal capacity in a higher-order system for modeling 
a complex nonlinear temporal process [39]. This paper proposes 
Recurrent Fuzzy Functions (RFFs) which have the following salient 
characteristics:

(1) A novel FF structure that benefits both interactive rules and 
recurrent structures is proposed. Before this work, FF systems were 
used with weighted averages based on rule firing rates for aggre-
gation, but in this study interactively recurrent nodes are used to 
improve the learning capacity of the dynamical structures of a time 
series.

(2) One important task in designing recurrent systems is train-
ing of the feedback weights. In our proposed system nodes, 
weights are trained with steepest descent that automatically tune 
the learning rate with a line search based on the strong Wolf con-
dition because of its fast learning speed.

(3) The computation is more efficient, and structure is simpler 
than other considered fuzzy structures, and it is more generaliz-
able.

Also by use of RFFs as the nonlinear autoregressive with exoge-
nous input (NARX) model of the data, prediction of chaotic flows 
with a hidden attractor is investigated using two different strate-
gies: short-term (quantitative) and long-term (qualitative).

The rest of this paper is organized as follows: the preliminar-
ies of the NARX model are briefly reviewed in section 2. Then in 
section 3, the FCM method for clustering will be presented. MARS 
regression is described in section 4. Details of the proposed RFFs’ 
structure and parameter learning scheme are presented in sec-
tion 5. In section 6, we introduce some rare chaotic systems with a 
hidden attractor which will be examined in case studies. Sections 7
and 8 give results and conclusions.

2. NARX model and optimal parameter

Generally in statistical prediction, a stochastic model based on 
previous observation is constructed to predict current and future 
values. A popular type of such a model is the nonlinear autore-
gressive moving average model with exogenous inputs (NARMAX) 
which is given by [46]:

y(t) = F
[

y(t − 1), . . . , y(t − ny), e(t − 1), . . . , e(t − ne),

x(t − 1), . . . , x(t − nx)
] + e(t) (1)

where x, e and y are external input, noise (which can be seen as 
representing the prediction error), and output of the system, re-
spectively. F is an unknown nonlinear function, and nx , ne and ny

are the maximum lags of the input, noise, and output, respectively. 
A special case of the general model is the NARX (ny , nx) model:

y(t) = F
[

y(t − 1), . . . , y(t − ny), x(t − 1), . . . ,

x(t − nx)
] + e(t) (2)

where it is assumed that e(t) has zero mean and finite variance 
σ 2 and is independent and identically distributed. The predictor 

model in many problems can be designed without the use of ex-
ternal input. Here we just use the past time series values and the 
prediction error.

The method of making a NARX representation involves deter-
mining the structure and estimating the parameters of the un-
known nonlinear system from data. Here we use the proposed RFFs 
as the structure, and parameters are estimated that minimize the 
prediction error.

3. Fuzzy C-means clustering

The cost function of the basic FCM algorithm assuming a known 
number of clusters is as follows [47]:

Jq (V , U ) =
M∑

i=1

C∑
j=1

uq
ijd(xi, v j) (3)

subject to the constraints:

C∑
j=1

uij = 1, i = 1, . . . , M (4)

where

uij ∈ [0,1] , 0 <

M∑
i=1

uij < M i = 1, . . . , M, j = 1, . . . , C

and q > 1 is the fuzziness, and xi , v j , M , and C are the ith in-
put data, the center of the jth cluster, the number of data points, 
and the number of clusters, respectively. Also U is an M × m ma-
trix whose i jth element is the membership degree of xi in the jth 
cluster, and V is a C ×m matrix which contains the m-dimensional 
centers of the clusters, and d(xi, v j) is the distance between xi and 
the jth cluster center.

After minimization, a closed form for the degree of membership 
of the features in the clusters is as follows [47]:

uij = 1

∑C
k=1

(
d(xi ,v j)

d(xi ,vk)

) 1
q−1

(5)

and the cluster prototype is:

v j =
∑M

i=1 uq
ijxi∑M

i=1 uq
ij

(6)

Fuzzy partition is carried out through an iterative process consist-
ing of computing the degree of membership and center of the clus-
ters by use of Eqs. (5) and (6), respectively, with random initializa-
tion. Based on the global convergence theorem of Zangwill [48], 
when different distance measures that satisfy certain conditions 
discussed in [49] are employed, convergence of the sequence pro-
duced by the above algorithm in a finite number of iterations to a 
local minima, has been proved [50].

4. Multi adaptive regression spline

MARS is one of the adaptive regression methods. This nonpara-
metric regression approach can be considered a generalization of 
stepwise linear regression and can efficiently represent the non-
linear relation and hidden patterns in data sets [51]. The sum of 
squares error for a general regression is as follows:

SSE =
n∑

i=1

(
yi − β0 − β1b1 (xi) − · · · − βP bP (xi)

)2
(7)
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