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We obtain the solution of the Dirac equation in (2 + 1) dimensions in the presence of a constant 
magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. 
We study the energy spectrum of graphene quantum dot (QD) defined by electrostatic gates. We give 
discussions of our results based on different physical settings, whether the cyclotron frequency is similar 
or larger/smaller compared to the oscillator frequency. This defines an effective magnetic field that 
produces the effective quantized Landau levels. We study analytically such field in gate-tunable graphene 
QD and show that our structure allows us to control the valley degeneracy. Finally, we compare our 
results with already published work and also discuss the possible applications of such QD.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, several interest have been devoted to the study 
of two-dimensional (2D) system such as quantum wells, quan-
tum wires, and quantum dots [1–6]. This interest is due to the 
technological advances in nanofabrication. In addition, one of the 
most important recent developments in semiconductor has been 
the achievement of structures in which the electronic behavior is 
essentially 2D. This means that the charge carriers are confined in 
a potential such that their motion in one direction is restricted 
and thus is quantized, leaving only a two-dimensional momen-
tum. In particular, there has been considerable amount of work 
in recent years on semiconductor confined structures, which finds 
applications in electronic and optoelectronic devices. The appli-
cation of a magnetic field perpendicular to the heterostructure 
plane quantizes the energy levels in the plane, drastically affect-
ing the density of states giving rise to the famous quantum Hall 
effect [7]. The latter remains as the most interesting phenomenon 
observed in physics because of its link to different theories and 
subjects.

Graphene [8,9], two-dimensional crystalline materials, has be-
come one of the most important subjects in condensed matter 
research in the last few years. This new material has a number 
of unique properties, which makes it one of the most promising 
materials for future nanoelectronics [10]. One of them is the band 
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structure, which is gapless and exhibits a linear dispersion rela-
tion at two inequivalent points K and K ′ in the vicinity of the 
Fermi energy. Moreover, its low energy of electrons is governed 
by a (2 + 1)-dimensional Dirac equation. Those electrons behave 
as massless chiral fermions, i.e. relativistic electrons. Consequently, 
the electrons cannot be localized by any confinement potential, 
which is related to the fact that electrons in graphene can have 
both positive and negative energies, i.e. Klein tunneling effect [11]. 
Unfortunately, the Dirac fermions cannot be confined by electro-
static potentials. This is due the so-called Klein tunneling effect 
[11] and the absence of the gap in the spectrum. Thus the re-
alization of the quantum dots (QD) is needed to overcome such 
situation. Recently, alternative strategies have been proposed to 
confine charged particles by using thin single-layer graphene strips 
[12,13] or nonuniform magnetic fields [14].

On the other hand, the Dirac oscillator was proposed by 
Moshinsky and Szczepaniak [15] in 1989 and is considered as 
the relativistic version of the harmonic oscillator. The Dirac os-
cillator has been studied extensively [16–21] because of their 
probable applications in many branches of physics. Additionally, 
the Dirac oscillator has been used in optics [22] and Jaynes Cum-
mings model [23]. It is only recently that the first experimental 
microwave realization of the one-dimensional Dirac oscillator was 
developed [24]. The experiment relies on a relation of the Dirac 
oscillator to a corresponding tight-binding system. Later on, it is 
shown that the two-dimensional Dirac oscillator model can de-
scribe some properties of electrons in graphene [25]. This model 
was used to explain the origin of the left-handed chirality observed 
for charge carriers in monolayer and bilayer graphene.
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We combine different approaches to achieve our goal. Indeed, 
based on [26,27] we set the Hamiltonian system of our problem 
where a similarity transformation is used to simplify the process 
for obtaining the solutions. Later on, we define the QD by gates 
introducing an electrostatic confining potential. We find the bound 
state solution of gate-tunable graphene QD in the presence of a 
constant magnetic field B and Dirac oscillator of frequency ω as 
well as a mass term that might be introduced by the underlying 
substrate [28,29]. The eigenspinors are obtained in terms of the 
confluent hypergeometric functions showing dependence of B and 
the oscillator coupling ω.

Subsequently, we analyze the impact of the external field B
on the solutions of the energy spectrum of the QD by extracting 
interesting properties. More precisely, we consider three different 
cases corresponding to the relative strength of B with respect to ω. 
In doing so, we start by defining an effective magnetic field, that 
produces the effective quantized Landau levels, and focus on its 
dependence of the bound states in circularly symmetric QD. We 
show how to control the valley degeneracy by manipulating the 
effective magnetic field. This can help to form the valley filters, 
valves [30], or qubits [31], and spin qubits [32] in graphene.

The paper is organized as follows. In section 2, we set our 
problem by reviewing some mathematical tools needed to deal 
with our issues. To investigate the basic feature of the gate-tunable 
graphene QD, we set the appropriate confining potential and give 
the corresponding solutions of the energy spectrum in section 3. 
Using the matching condition at the boundary, we obtain the con-
dition that governs the existence of the bound state. This will serve 
to study different liming cases related to the strength of the mag-
netic field. We conclude our results in the final section.

2. Theoretical model

In order to deal with our task we establish an appropriate Dirac 
equation describing our system. To go deeply in our study for the 
graphene QD, we introduce a mass term to open a gap.

2.1. Dirac equation

To start let us set some mathematical background related to 
Dirac formalism needed to deal with our task. Indeed, a particle 
of mass m in the presence of a constant perpendicular magnetic 
field can be described by considering the Dirac equation in (2 + 1)

dimensions[
iγ μ(∂μ + i Aμ) − m

]
ψ = 0, μ = 0,1,2 (1)

where the electromagnetic potential Aμ = (A0, �A) and the space–

time gradient ∂μ =
(

∂
∂t ,

�∇
)

. Here we have the representation 

γ 0 = σ3 and �γ = i �σ with the 2 × 2 hermitian Pauli spin matri-
ces {σi}3

i=1. The Dirac matrices γ μ satisfy the algebra{
γ μ,γ ν

} = γ μγ ν + γ νγ μ = 2Gμν, μ,ν = 0,1,2 (2)

with the metric G = diag(+ − −).
In our study of system made of graphene, we need to consider 

massless Dirac fermions. To this end, we multiply (1) by σ3 to open 
a gap, such as

i
∂

∂t
ψ =

(
−i �α · �∇ + �α · �A + A0 + mβ

)
ψ (3)

where we have set �α = i σ3 �σ and β = σ3. For time independent 
potentials, the two-component spinor wavefunction is separable 
ψ(t, r, θ) = e−iEtψ(r, θ). For regular solutions of (3), square inte-
grability and the boundary conditions require that ψ(r, θ) satisfies
√

r ψ(r, θ)
∣∣ r=0

r→∞
= 0, ψ(θ + 2π) = ψ(θ). (4)

To simplify the construction of the solution, we look for a local 
2 × 2 similarity transformation �(r, θ) that maps the cylindrical 
projection of the Pauli matrices (�σ · r̂, �σ · θ̂ ) into their canonical 
Cartesian representation (σ1, σ2), respectively. That is

� �σ · r̂ �−1 = σ1, � �σ · θ̂ �−1 = σ2. (5)

We note that any other choice for the pair of Pauli matrices can be 
obtained from the present one through a unitary transformation, 
hence leaving the physics of the problem unaltered. A 2 × 2 matrix 
that is defined by [26,27]

�(r, θ) = 1√
r

e
i
2 σ3θ . (6)

We are interested in the Dirac oscillator for its probable ap-
plication in many branches of physics as we noticed before [22,
24,25]. Motivated by these investigations, we consider such oscil-
lator in another context and emphasize its influence on a system 
based on the QD. To achieve this goal, we introduce an additional 
coupling as the 2D Dirac-oscillator potential [15,33], that keeps 
symmetry of the system. This coupling is introduced by the sub-
stitution �∇ → �∇ + λω�rβ where ω is the oscillator frequency and 
λ is a constant parameter. To simplify the forthcoming analysis, 
we require that the condition λ = m should be fulfilled. Now from 
the above consideration, we obtain the (2 + 1)-dimensional Dirac 
equation for a charged spinor in static electromagnetic potential

(H − E)χ± = 0 (7)

where the Hamiltonian is given by

H =
(

0 ∂r + i Ar − λωr − i
r ∂θ + Aθ

−∂r − i Ar − λωr − i
r ∂θ + Aθ 0

)
+ λσ3 + A0I (8)

and χ± are the components of the transformed wavefunction 
|χ 〉 = � |ψ〉, with � given in (6). It is clearly seen that the second 
term is gap and third one can be regarded as an external poten-
tial. In the forthcoming analysis, we will fix different potential in 
order to deal with some basic features some properties of the gate-
tunable graphene QD.

2.2. Mass term

Usually, the charge carriers in graphene have no rest mass. 
There are different ways how a mass term can be introduced and 
realized in graphene, one may see [34,35]. Motivated by these 
works, we want to show that our model is sharing some common 
features with graphene systems. This can be done by treating the 
mass term appearing in our model as an opining gap. Our state-
ment will be the subject of the forthcoming analysis.

To study the impact of the external field B and oscillating fre-
quency ω we consider a system made of graphene described by 
the Hamiltonian (8) except we replace λσ3 by τλσ3 with τ = ±1
differentiates the two valleys K and K ′ . Thus, we call the wave 
function χτ± spinor. To go further, let us set some quantities such 
a constant magnetic field of strength B applied perpendicular to 
the (r, θ )-plane, which is �B = B  ̂z. We choose the gauge �A(r, θ) =
B
2 (0, r) and assume a circular symmetry in the confinement po-
tential A0 = U (r). Consequently, (7) becomes completely separable 
in radial and angular parts. Then, we can write the spinor wave-
function as

χτ±(r, θ) = φτ±(r)ϕ(θ) (9)

such that the angular component satisfies the eigenvalue equation 
−i dϕ

dθ
= ξ ϕ where ξ is a real separation constant giving the func-

tion

ϕ(θ) = 1√
2π

eiξθ . (10)
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