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We theoretically investigate the second-order sideband effects in a hybrid electro-optomechanical system,
and mainly focus on the influence of the microwave signal on the second-order sideband generation. The
numerical results show that just by tuning the power and the detuning of the microwave signal, the
second-order sideband can be significantly modified. More importantly, while driving this hybrid system
by a blue detuned microwave with suitable power, strong second-order sideband effect can be induced.

These results can find potential applications in optical frequency converters in the quantum information
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1. Introduction

Quantum optomechanics [1-4], coupling the optical and me-
chanical degrees of freedom together by the radiation pressure of
light, has become a rapidly advancing field in recent years. Sev-
eral two-mode optomechanical systems [5-12], i.e., a single optical
mode coupled to a single mechanical mode, have been realized
experimentally, and some optomechanical-like systems [13-18]
have also been proposed. A lot of interesting phenomena, such
as resolved sideband cooling effect [5,15,19], optomechanically in-
duced transparency (OMIT) [9,20,21], signal amplification effect
(SAE) [22], electromagnetically induced absorption (EIA) [23], opti-
cal bistability (OB) [24,25], quantum squeezing [26,27] and so on,
have been extensively researched in such two-mode optomechani-
cal systems both in theory and in experiment.

Recently, there has been a rising interest in hybrid optome-
chanical systems with three or more degrees of freedom [28-42].
A hybrid electro-optomechanical system [29,30,32-35,37,38,43], in
which a microwave field and an optical field are coupled to a
common mechanical resonator, has particularly attracted extensive
attention. This hybrid system connects the low-frequency electrical
signals and the higher-frequency optical signals, so it has poten-
tial applications in quantum information network. In such a hybrid
system, the quantum state transfer between the optical and mi-
crowave cavity has been explored systematically [30,35,38], con-
trollable strong Kerr nonlinearities have been realized theoretically
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in the weak-coupling regime [32], phonon-mediated electromag-
netically induced absorption [34] has been discussed in detail, and
many other interesting phenomena [33,37] have also been focused
on.

In the present paper, we will systematically investigate the
second-order sideband effect in a hybrid electro-optomechanical
system. It is well known that many interesting phenomena such
as OMIT, SAE, and EIA in optomechanical systems can be explained
by the Heisenberg-Langevin equations [21-23]. However, in these
works, the second and higher-order terms in the Heisenberg-
Langevin equations have not been taken into consideration. As a
result, some interesting nonlinear phenomena [44-47] in the op-
tomechanical system have been ignored. Recently, Xiong et al. [44]
have proposed an effective method to deal with the nonlinear
Heisenberg-Langevin equations. They have explored the second-
order sideband process in a generic optomechanical system and
observed some interesting phenomena. Motivated by their work,
we have discussed the second-order sideband effect in a hybrid
electro-optomechanical system and explored the effect of the mi-
crowave signal on the second-order sideband process. The numeri-
cal results show that the power and the detuning of the microwave
signal have significantly influence on second-order sideband ef-
fects. More importantly, by a blue detuned microwave driving with
suitable power, strong second-order sideband effect can be induced
in this hybrid system.

2. Model and method

The hybrid electro-optomechanical system considered in the
present paper is composed of an optical cavity and a microwave
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Fig. 1. Schematic for a hybrid electro-optomechanical system.

one, and these two cavities are simultaneously coupled to the
same mechanical resonator, as is shown in Fig. 1. In this work, the
microwave cavity with a resonance frequency wq is driven by a mi-
crowave signal with amplitude Ep; and frequency wp1, while the
optical cavity with a resonance frequency w; is driven by a pump
laser with amplitude Ep; and frequency wpy as well as a weak
probe laser with amplitude Ep; and frequency wy. In a rotating
frame, the Hamiltonian of this hybrid system can be expressed as
[34]
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with Acp = w1 — wp1, Az =@ — wp2, and § = wpr — wpy.

The first term is the energy of the mechanical resonator with
frequency wp. X and P are respectively the dimensionless posi-
tion and momentum operators of the resonator with the commu-
nication relations [X, P] =i. The second term and the third one
respectively give the energy of the microwave cavity and the op-
tical cavity, where A (j=1,2) and aj(a;f) are respectively the
cavity-pump detuning and the annihilation (creation) operator of
the corresponding cavity mode. The fourth and fifth term rep-
resent the coupling between the mechanical resonator and the
microwave cavity as well as the optical cavity, respectively. g; is
the corresponding coupling strength. The last three terms describe
the interaction between the driving field and the cavity field. The
amplitude of the driving field is related to the input power P; by
E; = /P;/hw [21,44], where | = p1, p2, and pr respectively rep-
resent the microwave field, the optical pump field, and the optical
probe one. k1 (k) is the total loss rate which contains an intrin-
sic loss rate ko1 (ko2) and an external loss rate Kex1 (Kex2). 77j is
the coupling parameter between the cavity j and the correspond-
ing driving field, and 7j = kexj/(Koj + Kexj) [21,44]. In this work,
we mainly focus on the critical coupling case, i.e., n1 =12 =0.5.

According to the Heisenberg equation and the communication
relations [a;, a];.] =1 and [X, P] =1, the temporal evolution of the
operators aj, az, and X can be obtained. In this work, we are in-
terested in the mean response of the system to the probe field,
so all the operators can be reduced to their expectation values [21,
44). Taking the damping terms into consideration and dropping the
quantum and thermal noise terms, we can obtain the Heisenberg-
Langevin equations as follows,
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where aj(t) = (@;(t)), aj(t) = (&E(t)), X(t) = (X(¢t)), and yp, is the
damping rate of the mechanical resonator.

Defining the steady solution of the intracavity field and the
mechanical displacement as a; and X respectively, by solving the
equations (2), (3), and (4), we can obtain the steady solutions as
follows:

iy = VMKiEpi
b K1/2+iA1°

__ Mk2Ep
2T 21y

(5)

(6)

—
~
—

= (ol — ol 2
= —(821a2|" — g1la1 %),
Wm
where A1 = w1 — wp1 +g1X and Ay = wy — wp2 — £2X.

Linearizing the operators around the steady state values as aj =
aj+éa; (j=1,2) and X = X + X, the equations (2), (3), and (4)
then become as
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Considering the second-order sideband but ignoring the higher-
order ones, we can define the following ansatz [44],
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By substituting equation (11) into (8), (9), and (10), respectively,
and considering that the second-order sideband is much smaller
than the first-order one as well as the probe field, we can obtain
two group equations.

The first group describes the linear case,
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