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Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is 
studied theoretically and numerically. Hamilton’s principle and Bloch’s theorem are employed to derive 
the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the 
flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and 
totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-
link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite 
element analysis via commercial software of ANSYS shows large flexural wave attenuation within the 
band gaps and the effect of damping from the LLR substructures which helps smooth and lower the 
response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can 
be exploited for the design of flexural vibration control of beams.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Investigations on wave propagation in periodic structures have 
received much attention in recent years [1–4]. The studies are fo-
cused on the generating of unique band gaps within which acous-
tic waves are totally attenuated. Their related applications are 
promising in vibration isolators, frequency filters and waveguides. 
Previous configurations proposed in Refs. [5–7] are mainly on one-
dimensional lattice for controlling the longitudinal wave behaviour, 
which is far from practical application.

Beams are widely used in engineering constructions. Waves 
propagating through beams may cause damages for the struc-
tures and inaccuracy for some experimental measurements. Several 
structural configurations using the band gap concept have been 
designed for the control of the behaviour of waves in beams. 
In the configurations, the local resonators are attached to con-
tinuum beams to generate band gaps for stopping the propa-
gation of waves, including longitudinal wave [8], flexural wave 
[9–11] and torsional wave [12]. As for practical engineering ap-
plications, the control of flexural wave is of great importance for 
structures working under water regarding their radiation safety. 
With this awareness, Yu et al. [13] and Liu et al. [14] investigated 
flexural wave in different types of beams to prevent its propa-
gation, which provides guidance in vibration suppression design. 
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Sun et al. [15] attached small spring–mass–damper subsystems to 
a uniform isotropic beam to form a metamaterial, aiming at band 
gap generation for flexural vibration absorption.

Beams mentioned above yield only single band gap, which is 
inapplicable to devices or cases requiring multi-flexural wave sup-
pression. Besides, design and modelling of beams having multi-
flexural band gaps is more difficult due to their higher DOFs. Few 
researches have been carried out on this. So far, Wen et al. [16]
and Wang et al. [17] designed a multi-band gap beam by attach-
ing multi-local resonators periodically to a beam based on previous 
single band gap concept. Their work paved a way for multi-wave
suppression. Pai later extended their previous work [18], develop-
ing modelling and analysis methods to reveal the actual working 
mechanism of the multi-band gaps metamaterial beam for absorp-
tion of low frequency waves. All the work they’ve done focuses 
on the attachment of multi-resonators for the flexural wave con-
trol. No one has transformed the flexural waves to longitudinal 
waves and attenuated the flexural vibration in another direction 
in a beam.

Inspired by the LLR configuration proposed by Huang and Sun 
[19], this paper proposes a new metamaterial beam to generated 
multi-flexural band gaps with LLR substructures attached. The LLR 
structures can partially transform the flexural waves into longitu-
dinal waves, and block the wave propagation in another direction. 
The rest of this letter is organised as follows. A concise derivation 
of the Hamilton’s principles of the LLR beam is provided in Sec-
tion 2 and validated using the finite element method in Section 3
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Fig. 1. Construction of metamaterial beam: (a) an infinite beam, (b) a typical unit cell.

[20], with the analysis of the effect of the geometry parameters 
and damping on the band gaps. Design of the multi-band gap 
beams in applications is presented in the section of conclusion.

2. Theory and modelling

Fig. 1 shows a simple model of an Euler–Bernoulli beam with 
periodical LLR substructures in x direction. One LLR consists of two 
lateral resonators with spring and mass constant of k2 and m2, 
a vertical resonator with spring and mass constant of k1 and m1, 
and a four-link-mechanism with rigid and massless trusses. The 
beam and the vertical resonator vibrate in z direction and the lat-
eral resonators vibrate in x directions, with displacements of w , u1
and u2, respectively. The vertical distance and the horizontal dis-
tance of the four-link-mechanism are H and D . The length of the 
unit cell is L, and A, I , E and ρ denote the beam’s cross-section 
area, area moment, Young’s modulus and mass density, respec-
tively. The dispersion relation is derived below.

The governing equation for a unit cell of an infinite periodic 
metamaterial beam can be obtained by using the extended Hamil-
ton’s principle

L∫
0

(δT − δU + δWnc)dt = 0 (1)

where K is the kinetic energy, U is the elastic energy, and Wnc
is the non-conservative work from the external loads. From the 
typical unit cell, every item in Eq. (1) follows

δT = −
L/2∫

−L/2

ρ Aẅδwdx − m1ü1δu1 − 2m2ü2δu2 (2)

δU =
L/2∫

−L/2

E I w ′′δw ′′dx + k1(u1 − w0)δ(u1 − w0)

+ 2k2(u2 − v)δ(u2 − v)

=
L/2∫

−L/2

E I w(4)δwdx + k1(u1 − w0)δ(u1 − w0)

+ 2k2(u2 − v)δ(u2 − v)

+ E I
(

w ′′
1δw ′

1 − w ′′−1δw ′−1 − w ′′′
1 δw1

+ w ′′′
0+δw0 − w ′′′

0−δw0 + w ′′′−1δw−1
)

(3)

δWnc = E I w ′′
1δw ′

1 − E I w ′′−1δw ′−1 + E I w ′′′−1δw−1 − E I w ′′′
1 δw1

(4)

Based on the assumption of small displacements, we have

v = − H

2D
(w0 − u1) (5)

where w0 represents the flexural displacement of the centre of 
the beam, and v is the displacement of the truss end connected 
the lateral resonators. Substitution Eqs. (2)–(5) into Eq. (1) yields

0 =
t∫

0

{ L/2∫
−L/2

{
−ρ Aẅ − E I w(4)

+
[

k1(u1 − w0) − H

D
k2

(
u2 + H

2D
(w0 − u1)

)

+ E I
(

w ′′′
0+δw0 − w ′′′

0−δw0
)]

δ(x)

}
δwdx

+
[
−m1ü1 − k1(u1 − w0)

+ H

D
k2

(
u2 + H

2D
(w0 − u1)

)]
δu1

+
[
−2m2ü2 − 2k2

(
u2 + H

2D
(w0 − u1)

)]
δu2

}
dt (6)

where δ(x) is the Dirac function, w ′ = ∂ w/∂x and ẇ = ∂ w/∂t . 
Moreover, E I w ′′′

0− �= E I w ′′′
0+ because of a concentrated shear force 

created by the LLR substructure at x = 0. By setting the coefficients 
of δw , δu1 and δu2 in Eq. (6) to zero, the governing equations can 
be obtained.

−ρ Aẅ − E I w(4) +
[

k1(u1 − w0) − H

D
k2

(
u2 + H

2D
(w0 − u1)

)
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