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Quantum systems with positions and momenta in Z(d) are described by the d zeros of analytic functions 
on a torus. The d paths of these zeros on the torus describe the time evolution of the system. A semi-
analytic method for the calculation of these paths of the zeros is discussed. Detailed analysis of the 
paths for periodic systems is presented. A periodic system which has the displacement operator to a real 
power t, as time evolution operator, is studied. Several numerical examples, which elucidate these ideas, 
are presented.
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1. Introduction

There is an extensive literature on analytic representations in 
quantum mechanics, after the pioneering work by Bargmann [1,2]. 
The Bargmann analytic function in the complex plane studies prob-
lems related to the harmonic oscillator. The zeros of the Bargmann 
function, which are also the zeros of the Husimi (or Q ) func-
tion, provide a valuable insight to various quantum systems [3–10], 
chaos [10], etc. Other potential applications include the study of 
two-dimensional electron gas in a magnetic field, quantum Hall 
effect, [11–13], etc.

Analytic representations in the unit disc for problems with 
SU(1, 1) symmetry, and analytic representations in the extended 
complex plane for systems with SU(2) symmetry, have also been 
studied in the literature (reviews have been presented in [14–16]).

Quantum systems with variables in Z(d) (the integers mod-
ulo d) have been studied extensively in the literature (e.g., 
[17–20]). Refs. [21–25] have represented their quantum states with 
analytic functions on a torus, using Theta functions. It has been 
shown that these functions have exactly d zeros, which determine 
uniquely the state of the system. As the system evolves in time, 
the zeros follow d paths, on the torus. Ref. [4] has also used a sim-
ilar representation in studies of chaos. Theta functions have been 
used extensively in various problems in physics [26,27].

In this paper we study different aspects of the zeros of ana-
lytic functions for finite quantum systems with variables in Z(d), 
as follows:
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• We propose in Eqs. (18), (19) a semi-analytic method for the 
calculation of the paths of the zeros, which is primarily ana-
lytical (section 2). Previous work is based on entirely numeri-
cal methods. In principle the full quantum formalism can be 
expressed in terms of the d zeros. But it is difficult to ex-
press physical laws in terms of the zeros, without an analytical 
formalism that relates physical quantities to the zeros. The 
semi-analytical formalism in this paper is a step in this di-
rection.

• We study in detail the d paths of the zeros of periodic sys-
tems. Each path is characterized by the multiplicity M, and by 
a pair of winding numbers (w1, w2). An interesting periodic 
system is one, which has as time evolution operator the dis-
placement operator to a real power t . Displacement operators 
ZαX β are defined in finite quantum systems for α, β ∈ Z(d), 
and it is interesting to study these operators to a real power 
t . It is shown that the paths of the zeros are identical, but 
shifted with respect to each other (section 3).

2. Analytic representation of finite quantum systems

We consider a finite quantum system with variables in Z(d). 
This system is described with the d-dimensional Hilbert space 
H(d). Let |X; m〉 and |P ; m〉 (where m ∈ Z(d)) be the position and 
momentum bases which are related through a Fourier transform, 
as follows:

|P ;n〉 = F |X;n〉; F = d−1/2
∑
m,n

ω(mn)|X;m〉〈X;n|;
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ω(m) = exp

[
i
2πm

d

]
(1)

Let |g〉 be an arbitrary state

|g〉 =
∑

m

gm|X;m〉;
∑

m

|gm|2 = 1 (2)

We use the notation

|g∗〉 =
∑

m

g∗
m|X;m〉; 〈g| =

∑
m

g∗
m〈X;m|

〈g∗| =
∑

m

gm〈X;m| (3)

We represent the state |g〉 with the analytic function [3,4,21]

G(z) = π−1/4
d−1∑
m=0

gm �3

[
πm

d
− z

√
π

2d
; i

d

]
(4)

where �3 is the Theta function [28]

�3(u, τ ) =
∞∑

n=−∞
exp(iπτn2 + i2nu)

�′
3(u, τ ) = d�3

du
= i

∞∑
n=−∞

2n exp(iπτn2 + i2nu). (5)

We can prove that

G(z + √
2πd) = G(z)

G(z + i
√

2πd) = G(z)exp
(
πd − iz

√
2πd

)
, (6)

and therefore it is sufficient to have this function in a cell

S = [M
√

2πd, (M + 1)
√

2πd) × [N
√

2πd, (N + 1)
√

2πd) (7)

where (M, N) are integers labelling the cell. Other models with 
more general quasi-periodic boundary conditions can also be stud-
ied. The scalar product is given by

〈 f ∗|g〉 = 1

d3/2
√

2π

∫
S

dμ(z)F (z∗)G(z) =
∑

fm gm;

dμ(z) = d2z exp
(
−z2

I

)
(8)

These relations are proved using the orthogonality relation [22]

2−1/2π−1d−3/2
∫
S

dμ(z)�3

[
πn

d
− z

√
π

2d
; i

d

]

× �3

[
πm

d
− z∗

√
π

2d
; i

d

]
= δ(m,n) (9)

The coefficients gm in Eq. (2) are given by

gm = 2−1/2π−3/4d−3/2
∫
S

dμ(z)�3

[
πm

d
− z

√
π

2d
; i

d

]
G(z∗).

(10)

It has been proved in [4,21] that the analytic function G(z) has 
exactly d zeros ζn in each cell S , and that

d∑
n=1

ζn = √
2πd(M + iN) + d3/2

√
π

2
(1 + i). (11)

In finite systems the d − 1 zeros define uniquely the state (the last 
zero is determined from Eq. (11)). In infinite systems the zeros do 
not define uniquely the state.

If the d − 1 zeros ζn are given, the last one can be found from 
Eq. (11), and the function G(z) is given by

G(z) = N ({ζn})

× exp

[
−i

√
2π

d
Nz

]
d∏

n=1

�3

×
[√

π

2d
(z − ζn) + π(1 + i)

2
; i

]
(12)

Here N is the integer that labels the cell (as in Eq. (7)), and 
N ({ζn}) is a normalization constant that does not depend on z (see 
section 7 in Ref. [21]). Below we choose the cell with M = N = 0.

2.1. Time evolution and paths of zeros

Let H be the Hamiltonian of the system (a d × d Hermitian 
matrix Hmn). As the system evolves in time t , each zero ζn follows 
a path ζn(t).

We consider infinitesimal changes to the coefficients from gm

to gm + 
gm , where


gm = i
t
∑

n

Hmn gn (13)

Then the zeros will change from ζn to ζn +
ζn . From Eqs. (4), (12)
we get

π−1/4
d−1∑
m=0

(gm + 
gm) �3

[
πm

d
− z

√
π

2d
; i

d

]

= N ({ζk})
d∏

n=1

�3

[√
π

2d
(z − ζn − 
ζn) + π(1 + i)

2
; i

]
(14)

With a Taylor expansion of the right hand side, we get

π−1/4
d−1∑
m=0


gm �3

[
πm

d
− z

√
π

2d
; i

d

]
= −N ({ζk})

√
π

2d

×
d∑

j=1

A j(z)�′
3

[√
π

2d
(z − ζ j) + π(1 + i)

2
; i

]

ζ j

A j(z) =
∏
m 	= j

�3

[√
π

2d
(z − ζm) + π(1 + i)

2
; i

]
(15)

We insert z = ζn on both sides of this equation. For j 	= n we get 
A j(ζn) = 0. Therefore

π−1/4
d−1∑
m=0


gm �3

[
πm

d
− ζn

√
π

2d
; i

d

]

= −N ({ζk})
√

π

2d
An(ζn)�

′
3

[
π(1 + i)

2
; i

]

ζn

An(ζn) =
∏
m 	=n

�3

[√
π

2d
(ζn − ζm) + π(1 + i)

2
; i

]
(16)

Using Eq. (5), we found numerically that

�′
3

[
π(1 + i)

2
; i

]
= 1.9888i. (17)
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