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The structure of the entanglement dynamics of a qubit coupled to a quartic oscillator is investigated 
through the calculation of timescales of visibility and predictability, and their relation with the 
concurrence dynamics. This model can describe a Rydberg atom in a Kerr medium. A method based on 
the analysis of the different interference processes of the terms that compose the physical quantities 
studied is proposed, and timescales related to decay, revivals and fast oscillations under the decay 
envelope are computed. The method showed to be effective for the vast majority of cases studied, even 
when the timescales vary several orders of magnitude. The conditions for expansions in power series to 
give correct decay timescales are analyzed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of dynamical systems is extremely important in many 
fields, such as mathematics, physics, biology, economics, engineer-
ing, geology and medicine. Characteristic timescales are often em-
ployed for the characterization of the dynamics, frequently aim-
ing at applications. For a periodic system, the period is the main 
timescale, whereas for a chaotic system, such role is played by the 
inverse of the Lyapunov exponent. An ensemble of classical trajec-
tories, on the other hand, has a characteristic timescale associated 
to the collapse of the dynamics. An important discussion in statis-
tical physics is related to the time for the system to converge to 
the Boltzmann–Gibbs distribution [1–6]. In a recent contribution, 
Parolo and co-workers [7] investigated the characteristic time in 
which scientific publications have relevant impact: they observed
that it scales inversely with the growth rate of the number of 
publications in a particular field. This illustrates the fact that the 
relevance of characteristic timescales goes further than the tradi-
tional problems of theoretical physics.

For quantum systems, the scenario is not different: the anal-
ysis of timescales was present since the beginning, becoming 
more relevant with the development of computation. Characteris-
tic timescales are important tools for the investigation of quantum 
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complex dynamics, and the search for general procedures aimed 
at finding them has been undertaken for decades (see [8–10] and 
references therein). Some of the strategies for the calculation of 
characteristic timescales are the saddle point approach [11], short-
time perturbative expansion [9], and the use of semiclassical meth-
ods [12–15]. As reported in Refs. [10,12,16], quantum timescales 
depend strongly on both the observable as the Hamiltonian and, 
if the system is coupled to an environment, they are also influ-
enced by the particular form of the interaction [10,17–19]. There 
are plenty of ongoing works in which characteristic timescales play 
significant roles; some examples are focused on the decay of fi-
delity [20–23] and on the protection of quantum states [24–26], as 
well as on the generation of entangled ensembles [27].

The construction of quantum models and the analysis of their 
dynamics is clearly central to the understanding of the phenom-
ena observed in the laboratory, but not only that: it also tells 
us what effects we can expect from the formalism. In this con-
text, Jaynes–Cummings model [28] is paradigmatic: it has been 
employed for decades in the modeling of experiments [29] and, 
due to the complex dynamics that it produces even in the rotat-
ing wave approximation, the model is an excellent tool to under-
stand the possibilities that quantum dynamics offer us [30–33]. 
Quantum nonlinear oscillators, in turn, showed to be appropri-
ate in the description of many systems of interest [34,35], and 
also very useful for theoretical exploration of quantum mechan-
ics [10,12,16,17,23,36,37]. Since the Schrödinger equation is linear, 
it does not present sensitivity to initial conditions, as in the case 
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of classical chaotic systems [38–42]. This fact raised fundamen-
tal questions related to the expectation that classical mechanic’s
validity domain must be contained within quantum mechanic’s va-
lidity domain. Among the proposals to address this issue, there are 
the decoherence program [10,16,40,42–44] and the experimental 
uncertainties approach [17–19,45–50]. The quartic model, which 
is a good approximation for the interaction of a field in a Kerr 
medium [51,52], can be used as a platform for quantum chaos re-
search [36,37,53–56]. A peculiar feature of this model is useful for 
studying the problem of the classical limit of quantum mechanics: 
its dynamics becomes more classical in the Newtonian sense the 
lower the initial classical action is, and more classical in the Liou-
villian sense when classical action increases [10,12,16–19,57]. The 
attention to nonlinear quantum models had a recent increase re-
lated to research in biology [58–62]. As an example, we highlight 
the discussion on the necessity of adopting cavity quantum elec-
trodynamics models for the description of microtubules [61] and 
the debate about the effects of the thermal bath in the relevant 
timescales in such biological systems [58–60].

In the present contribution, we chose one quartic oscillator as a 
model [12,18,52,63,64] coupled to a two-level system, and seek to 
understand, through the analysis of characteristic times related to 
visibility, predictability, and concurrence, how nonlinearities affect 
the structure of the dynamics of entanglement. By varying the pa-
rameters related to nonlinearities, we can go from the limit where 
we have the Jaynes–Cummings model to the other one, where 
the dynamics is dominated by the effects of nonlinearities. Similar 
models have been studied by other authors (see [35,65] and refer-
ences therein), but, to our knowledge, not in the context of entan-
glement timescales. Since the quartic model was performed in the 
laboratory, with a good agreement with the theoretical results [34], 
we believe that the system investigated here can be done experi-
mentally, by means of the interaction of the field in a Kerr medium 
with a Rydberg atom, which can be approximately regarded as a 
two-level system. In Ref. [10], characteristic times computed from 
power series expansions are able to give relevant scales for systems 
composed of quartic oscillators. On the other hand, this procedure 
does not lead to the timescale that characterizes appropriately the 
decay of visibility for the Jaynes–Cummings model [66]. In the 
present study, we develop a method involving direct inspection of 
the distributions of the constants that appear in the addends that 
form the physical quantities investigated; using this method, we 
made explicit the conditions for the decay timescales to be cor-
rectly calculated by means of power series expansions. Under such 
conditions, the use of power series expansions leads to timescales 
equivalent to the ones computed through the inspection of dis-
tributions of constants. The method described here showed to be 
useful also for the computation of other timescales (not strictly re-
lated to decay) for the majority of cases investigated. This paper 
is organized as described below. In the next section, we present 
the model and its solution. In Section 3, we calculate the visi-
bility, predictability and concurrence for the system under study. 
In Section 4, we perform the definitions of different characteris-
tic timescales and propose ways to calculate them, always based 
on the inspection of distributions of constants. The investigation 
of such timescales for different parameters of the Hamiltonian and 
initial conditions is shown in Section 5. The final considerations 
are found in Section 6.

2. The model

Consider a quartic oscillator coupled to a two-level system ac-
cording to the Hamiltonian

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (1)

where

Ĥ0 = h̄ωâ†â + 1

2
h̄ω0σ̂z + γ1h̄

(
â†σ̂− + âσ̂+

)
,

Ĥ1 = h̄2λ
(

â†â
)2

, Ĥ2 = γ2h̄2
(

â†âσ̂z

)
, (2)

ω, ω0, γ1, λ and γ2 are real constants, â† and â are bosonic 
operators, and σ̂+ , σ̂− and σ̂z are Pauli operators. The operator 
Ĥ0 corresponds to the Jaynes–Cummings model in the rotating 
wave approximation [28], which is usually employed to model a 
two-level atom interacting with a field mode in the vacuum. The 
operator Ĥ1, in turn, is proportional to the third order nonlinear 
susceptibility in the rotating wave approximation, and the operator 
Ĥ2 accounts for the dispersive atom-field interaction [34,67].

This Hamiltonian can be used to model a Rydberg atom in a 
Kerr medium. In the early eighties, Drummond and Walls derived a 
quantum model for dispersive optical bistability as a quartic oscil-
lator [67]. This nonlinear Hamiltonian was intensively investigated 
by others [12,34,36,37,64,68–73]. Recently, Kirchmair and collabo-
rators analysed the interaction of a strong field with an atom in 
the dispersive regime, and found the term σza†a as the most rel-
evant [34]. This kind of interaction has been also studied by [68,
70,71]. The experimental investigation of a Rydberg atom in a Kerr 
medium was performed by Mohapatra and collaborators who var-
ied the regime of interaction from resonant to dispersive [71].

In what follows, |g〉 and |e〉 denote the fundamental and excited 
states of the two-level system, respectively, and |n〉 are Fock states. 
Clearly, |g,0〉 is an eigenstate of Ĥ with eigenvalue E+

0 = −h̄ω0/2. 
By observing that this Hamiltonian preserves the total number of 
excitations, one can calculate the remaining eigenvalues and eigen-
vectors, given by the expressions below, valid for n ≥ 1:

Ĥ
∣∣E±

n

〉 = E±
n

∣∣E±
n

〉
, (3)

where

E±
n = f22n + f11n ±

√
( f22n − f11n)

2 + 4 ( f12n)
2

2
,∣∣E±

n

〉 = α±
n |e,n − 1〉 + β±

n |g,n〉 , (4)

with

α±
n = ± f12n√

( f12n)
2 + (

E±
n − f11n

)2
,

β±
n = ± (

E±
n − f11n

)
√

( f12n)
2 + (

E±
n − f11n

)2
, (5)

and

f11n =
(

h̄ω + γ2h̄2
)

(n − 1) + 1

2
h̄ω0 + h̄2λ (n − 1)2 ,

f22n =
(

h̄ω − γ2h̄2
)

n − 1

2
h̄ω0 + h̄2λn2, f12n = γ1h̄

√
n. (6)

3. Calculation of visibility, predictability and concurrence

If the state of the system is pure at the time t , it can be written 
in the form

|� (t)〉 = ag,0 (t) |g〉 |0〉

+
m∑

n=1

(
ae,n−1 (t) |e〉 |n − 1〉 + ag,n (t) |g〉 |n〉) , (7)
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